

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

DEPARTMENT OF SOFTWARE ENGINEERING AND

PROGRAMMING LANGUAGES

Institute of Computer Science
Universitätsstr. 6a D-86135 Augsburg

Incremental Model Checking of
Recursive Kripke Structures

Jan Finis

Master’s Thesis in the Elite Graduate Program
Software Engineering

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

DEPARTMENT OF SOFTWARE ENGINEERING AND

PROGRAMMING LANGUAGES

Institute of Computer Science
Universitätsstr. 6a D-86135 Augsburg

Incremental Model Checking of
Recursive Kripke Structures

Submission Date: January 23, 2012
First Supervisor: Prof. Dr. Wolfgang Reif
Second Supervisor: Prof. Dr. Alexander Knapp
Advisors: Dr. Ansgar Fehnker, Dr. Gerhard Schellhorn

Erklärung

Hiermit versichere ich, dass ich diese Masterbeit selbständig verfasst habe. Ich habe dazu
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

München, 19. Januar 2012 Jan Finis

Acknowledgments

First, I would like to thank my supervisor Prof. Dr. Wolfgang Reif for giving me the
chance to write my thesis abroad in the renowned National ICT Australia (NICTA).

Second, I want to thank NICTA for accommodating me during my thesis. Especially, I
want to thank my adviser at NICTA, Dr. Ansgar Fehnker, for providing this very interest-
ing topic and for helping me with getting into it.

Third, thanks go to my adviser Dr. Gerhard Schellhorn for providing viable feedback for
the thesis. Especially his suggestions about more concise notational conventions made the
thesis easier to be read and grasped.

Finally, let me thank my second supervisor Prof. Dr. Alexander Knapp for various in-
tense feedback sessions about the formalization of the algorithms and the proof of their
correctness.

Abstract

Static code analysis is a widespread method for automatic bug detection in software. A
promising approach for testing whether a program satisfies certain requirements is model
checking. Here, a model of the system is built and properties specified in a temporal logic
like linear temporal logic (LTL) or computational tree logic (CTL) are checked by thor-
oughly exploring the state space of the model. The implementation and complexity of the
model checking problem depends on the used model. The traditional approach to model
checking is using finite transition systems like Kripke structures. While these models are
suitable for modeling the local control flow in a function (intra-procedural analysis), they
are unable to model the global control flow (inter-procedural analysis) adequately without
introducing a very large number of states by “inlining” all function calls. In case of recur-
sion, the resulting model would even become infinitely large, thus totally prohibiting the
use of these types of models. A promising replacement for inter-procedural analysis are
models which incorporate function calls and are thus able to represent an infinite number
of configurations by a finite model. Model checking of such extended models currently is
a topic of intense research. A natural extension of Kripke structures are so-called recur-
sive Kripke structures (RKSs) which introduce a call/return concept to Kripke structures.
Therefore, RKSs are able to model the global control flow of a program including function
calls in a concise and natural way.

In this thesis, a novel algorithm for model checking RKSs with CTL is proposed, which
is based on the reduction of the infinite set of configurations of an RKS to a finite set of
equivalence classes. The formal basis for the soundness of the algorithm is analyzed and
the overall correctness of the algorithm is formally proven. Afterwards, a refinement of
the algorithm is presented. Here, incremental checking techniques are introduced in order
to drastically reduce the effort and thus increase the performance of the algorithm. The
correctness of the incremental refinement is proven as well. The proposed algorithms are
implemented into the explicit state model checker XMV, which is used in the static analysis
tool Goanna. The concepts for the implementation and optimizations like appropriate
data representation and preprocessing are discussed. Finally, a brief evaluation of the
implemented algorithms is conducted.

Contents

Glossary xiii

1. Introduction 1
1.1. Objective & Motivation . 1
1.2. Related Work . 3
1.3. Scope . 7
1.4. Overview . 9

2. Recursive Kripke Structures 11
2.1. Kripke Structures . 11
2.2. Computational Tree Logic (CTL) . 13
2.3. Minimal Representation of CTL . 16
2.4. Recursive Kripke Structures . 16
2.5. Ternary Logic . 24

3. Model Checking Recursive Kripke Structures with CTL 27
3.1. The Basic Approach . 27
3.2. Overview . 28
3.3. Preliminary Considerations . 29

3.3.1. Call Context . 29
3.3.2. Knowledge Base . 36
3.3.3. Obtaining Certain Call Contexts . 37

3.4. The Labeling Algorithm . 40
3.5. Labeling EG and EU . 47
3.6. Model Checking Using the Labeling Algorithm 57
3.7. Differences to the Basic Approach . 63

4. Incremental Refinement 65
4.1. Overview . 65
4.2. Differences to the Non-Incremenal Algorithm 67
4.3. Algorithmic Details . 67
4.4. EG and EU Labeling in Presence of Subformula m Values 73
4.5. Correctness of the Incremental Refinement 74

5. Implementation 79
5.1. Input Specification . 79
5.2. State Space Generation . 84
5.3. Data Representation . 85
5.4. Optimizations . 87

xi

Contents

5.5. Evaluation . 88

6. Conclusion & Future Work 91

Appendix 92

A. Basic Approach 93
A.1. Overview . 93
A.2. Summary Generation . 93

A.2.1. Local Checking & Context Assumptions 94
A.2.2. Summaries . 94
A.2.3. Context Assumptions . 95
A.2.4. Sub-structure to Kripke Structure Transformation 96
A.2.5. Guarantee Coherence . 97
A.2.6. Assumption Consistency . 98
A.2.7. The Summary Generation Algorithm 99

A.3. Checking Nested CTL Formulae . 100
A.3.1. Split . 101
A.3.2. Merge . 103
A.3.3. Labeling Nested Formulae . 104

A.4. Correctness . 107

Bibliography 109

List of Figures 115

List of Algorithms 117

xii

Glossary

Term Definition Defined
at page

Boolean and Ternary Logics
B = {t, f} The set of boolean logic values -
t A boolean / ternary logic true value 24
f A boolean / ternary logic false value 24
m A ternary logic maybe value 24
T = B ∪ {m} The set of ternary logic values 24

Kripke Structures and RKSs
K A Kripke structure 11
P The set of all paths of a Kripke structure 11
R = (S, Sin) A recursive Kripke structure 17
R Class of all recursive Kripke structures 19
S A sub-structure of an RKS 17
Sin Initial sub-structure of an RKS 17
S Class of all sub-structures of an RKS 17
S(R) Set of all sub-structures ofR 19
S(c), S(l) Sub-structure in which call c or location l is located 19
S←c Sub-structure called by call c 19
S←σ Sub-structure called by call stack σ, that is, called by

the topmost call of σ
22

K(R) The semantic Kripke structure ofR 22
K(κ, S, θ) The associated Kripke structure of S called under con-

text θ. The labels are looked up from κ
48

Kinc(κ, S, θ) The associated incremental Kripke structure of sub-
structure S called under context θ. The labels are
looked up from κ

73

K(S, α, η) The associated Kripke structure of sub-structure S us-
ing call assumptions α and a context assumption η

96

Kripke Structure Components
s A state in a Kripke structure 11
S Set of states of a Kripke structure 11
I Set of initial states of a Kripke structure 11
ω The virtual omega state inK andKinc denoting the suc-

cessor location of the exit location lout
48

RKS Components

xiii

Glossary

Term Definition Defined
at page

l A location 17
lin The initial location of a sub-structure 11
lout The exit location of a sub-structure 17
lterm The virtual termination location of an RKS 22
lsucc(c) The successor location of a call c 19
L A set of locations of a sub-structure 17
c A call 17
cin The virtual initial call which “starts” an RKS 21
C A set of calls of a sub-structure 17
lin(S), lout(S) The initial location / exit location of S 19
L(S), C(S) The set of locations / calls of sub-structure S 19
L(R), C(R) The set of all locations / calls in all sub-structures ofR 19
ν The call mapping of a sub-structure 17
µ The labeling function of a sub-structure 17
δ The transition relation of a sub-structure 17
νS , µS , δS The call mapping, labeling function, and transition re-

lation of sub-structure S
19

RKS Semantics
σ = [c1, . . . , cn] A callstack 21
σ ⊕ c A callstack with topmost call c 21
S (R) The set of all callstacks ofR 21
(σ, l) A configuration of an RKS consisting of a call stack σ

and a location l
21

C The set of all configurations of an RKS 22

CTL
p, q, r Atomic propositions -
AP A set of atomic propositions -
ϕ,ψ, χ CTL Formulae -
CTL Class of all CTL Formulae 13
pϕq, pψq, pχq Atomic proposition in the associated Kripke structure

denoting the certain validity of ϕ, ψ, or χ
48

pϕ?q, pψ?q, pχ?q Atomic proposition in the associated Kripke structure
denoting that it is unkown whether ϕ, ψ, or χ is valid

48

xiv

Term Definition Defined
at page

Terms Used by the Model Checking Algorithm
κ A knowledge base 36
K The class of all knowledge bases 36
Ξ A set of sub-structure call context pairs (S, θ) 40
θ = 〈η〉τ A call context 29
η A context assumption 29
ηϕ A context assumption for the validity of ϕ 29
τ A subformula in a call context 29
θϕ A call context with respect to formula ϕ 29
θϕ(σ) The call context of callstack σ with respect to formula ϕ 30
θ(c, θϕ) The call context of call cwith respect to formula ϕ given

that the sub-structure S(c) is called under context θϕ
35

Θ The class of all call contexts 29
ica(ϕ) The initial context assumption with respect to ϕ 37
icc(ϕ) The initial call context with respect to ϕ 38
cc(κ, c, θ) The call context, as looked up from κ, of the call cwhich

is called under context θ
38

Terms Used by the Basic Approach
γϕ = (α, ω) A summary for a sub-structure with respect to ϕ 94
Γ The class of all summaries for sub-structures 94
πϕ A summary for an RKS with respect to ϕ 94
πϕ(S) = γϕ Selection of a summary for sub-structure S with respect

to ϕ
94

Π The class of all summaries for RKSs 94
ca(γ, c, η) The context assumption, as looked up in γ, for call c

which is called under context assumption η
96

α The assumption function of a summary 94
ω The guarantee function of a summary 94
υ The accumulator mapping in the split and merge pro-

cess
102

K(S, α, η, ϕ) The associated Kripke structure of sub-structure S with
call assumptions α and context assumption η for check-
ing formula ϕ

96

pt, pm Labels in the associated Kripke structure denoting ei-
ther the validity of ϕ or its subformula ψ

96

Miscellaneous
N The natural numbers including zero -
α, β, λ Locally used, unnamed functions -

xv

Chapter 1.

Introduction

In this chapter, the field of static analysis using model checking is introduced and the chal-
lenges in this field, which form the motivation for this thesis, are discussed. Afterwards, a
brief overview over related work in this area of research is given, followed by the descrip-
tion of the scope of this thesis. Finally, the structure of the thesis is summarized.

1.1. Objective & Motivation

The process of writing high-quality software products is becoming more and more chal-
lenging due to the increasing program size and time and budget pressure. A key point
for ensuring high quality is to analyze the written source code. Basically, this task can be
done manually by humans or automatically by software. The manual solution is often per-
formed as code reviews or audits. Here, the problem is that manually looking for bugs in
the code is very expensive, time consuming, and error-prone, as a human can always miss
some of the bugs. In contrast, automatic code analysis comes virtually for free (once the
analysis tools are bought) and usually finds all errors of a certain type without “overlook-
ing” any. The field of static program analysis (also called static code analysis or merely static
analysis) consists of all automated techniques for analyzing the source code (or sometimes
also the compiled object code) of a program without actually executing this program. Us-
ing static program analysis in a software development project usually yields large benefits
and is therefore performed in an increasing percentage of software projects. The usage of
static program analysis is especially recommended in safety-critical areas where the bugs
are intolerable, like in flight control or nuclear power plant control software.

Various techniques exist for performing static analysis. For example, data flow analysis
infers propagation of variable values throughout the control flow of the program. This
technique could, for example, yield that a null-pointer is propagated to a point in the pro-
gram where it is dereferenced, which would cause a thread crash and is usually not the
intended behaviour of a program. Lately, the technique of using model checking for static
program analysis has gained an increasing amount of interest. Model checking is a graph
exploration technique which is able to verify whether a given property holds in all possi-
ble executions of a system represented by a model. The model is usually a state machine
like a Kripke structure in which states are labeled with certain propositions according to ele-
mental properties which hold in this state. The properties to check for such model are then
specified in a temporal logic like computational tree logic (CTL) or linear temporal logic
(LTL) which is able to express properties that executions of the system must satisfy. Some-
times, other equivalent temporal property specifications like Büchi automata are used. A
model checker is able to determine whether it is guaranteed that such a formula holds

1

Chapter 1. Introduction

1 int main(){
2 int x, y;
3 if(z()){
4 x = 5;
5 } else {
6 y = 2;
7 }
8 printf("X is %d",x);
9 }

if(z())

int x,y;

x = 5; y = 2;

printf(…);

Figure 1.1.: A C function and its corresponding control flow graph

in the system. If it does not hold, a model checker is able to compute a (usually mini-
mal) counter example. Such example usually consists of an execution of the state machine
(i.e., a sequence of states) which violates the specified temporal property. For example,
the aforementioned example of the null-pointer dereferenciation could also be solved by
model checking by constructing a temporal formula which encodes the property “it may
never happen that there is an execution in which a null value is assigned to a variable and
it is subsequently dereferenced without assigning a non-null value to it inbetween”. The
model checking problem is seperated into a local and a global one. While the local model
checking problem consists of determining whether a temporal property holds in a specific
state (often the initial one), the global model checking problem consists of finding the set
of all states which satisfy a temporal property.

The usage of model checking for static analysis presumes that a model of the system
which is accurate enough to check the desired properties can be built efficiently. The most
precise and exhaustive model of a computer program would be to encode its thorough
state space into the state machine. However, the state space of a program is usually very
large, even for trivial programs. With a (virtually) unbounded memory size, it can even
become infinite. Thus, the state space is often no feasible candidate for the static analysis
of programs and abstractions have to be made.

An abstraction which is often used for static analysis is the control flow graph (CFG) of
the program. This directed graph depicts the possible execution paths a program can take.
The nodes are for example statements in the code and edges between two nodes A and
B depicts that the program execution can go from A to B. Figure 1.1 depicts a C function
and its corresponding control flow graph. This model of a function can be used to check
certain properties of the local control flow inside the function. Checking local per-function
properties is called intra-procedural analysis. Although this analysis is already able to find
many bugs, it can never find bugs that result from the global control flow of the program.
For example, intra-procedural analysis is unable to do null-pointer-dereferenciation checks
for global pointer variables that are written in one function and then read in another one.
Therefore, it is beneficial to conduct an analysis which is able to analyse the control flow
between functions that call each other. This analysis is called inter-procedural analysis. Such
analysis must work with a model which embodies function calls as well as local intra-

2

1.2. Related Work

procedural control flow. In the example in the figure above, this would mean that the call
to function z() would have to be represented in the model.

Performing inter-procedural code analysis by model checking is still a challenging field
of research. Usual model descriptions like Kripke structures are not suitable for this field
anymore, since they fail to represent the function calls efficiently. Therefore, other models
which are able to represent the inter-procedural control flow must be used. An example
for those models are recursive Kripke structures (RKSs), as used in this thesis, which are also
often referred to as recursive state machines or hierarchical state machines1. Another promi-
nent model are pushdown automata. The advantage which recursive Kripke structures
have compared to other representations is that they represent the control flow graph very
naturally and are thus easy to create and interpret.

The Goanna tool [45, 46, 54] is a proof of concept static code analysis tool using model
checking. For intra-procedural checking, the tool used the well-known symbolic model
checker NuSMV [38]. Because the state space of control flow graphs is rather small, sym-
bolic model checking, which is especially designed for checking very huge state spaces, is
not very suitable. The binary decision diagrams (BDDs) used by NuSMV tend to become
very large thus making the static analysis process very slow. Therefore, the model checker
XMV was developed for the Goanna project. This model checker uses an explicit represen-
tation of the state space and yields a performance gain for intra-procedural static analysis
compared to NuSMV.

XMV does not support model checking of recursive Kripke structures, yet. This the-
sis aims to add this support to the model checker, allowing Goanna to perform inter-
procedural model checking efficiently. The techniques used are based on the approach
of Fehnker et al. [44]. In addition to formalizing and implementing this approach, it is also
tried to find optimizations which yield additional performance benefits. These benefits are
necessary to allow the inter-procedural analysis of large projects in an acceptable period
of time.

1.2. Related Work

Generally, the field of model checking and static program analysis is huge. Therefore, the
focus is laid on the narrower field of model checking of recursive state machines and com-
parable models. All those techniques are based on the basic principles of model checking.
For a definitive book about this topic, refer to the book of Baier et al. [11].

Model checking of recursive models is a field of intense study. Many contributions were
made for model checking different models with respect to different temporal property
specification languages. The most important models are recursive state machines and
pushdown automata. Temporal properties are usually specified in CTL* or one of its sub-
sets like CTL, LTL, or EF. Furthermore, Büchi automata are often used instead of LTL or
specialized temporal logics are proposed. Finally, also general problems which do not use
a certain temporal logic, like reachability, cycle detection, or transitive closure of succes-
sors or predecessors, are solved in many contributions. The model checking with respect
to a certain temporal logic is often reduced to these problems.

1The term “hierarchical” often forbids recursion, thus allowing only non recursive-programs in which the
call graph actually forms a directed acyclic graph.

3

Chapter 1. Introduction

Recursive state machines have been first analyzed by Alur et al. In their first contri-
bution [9], their algorithm is restricted to hierarchical state machines without recursion.
They present techniques for solving reachability, cycle detection, and LTL and CTL model
checking for those structures. They also find that CTL model checking is PSPACE-complete
in the formula depth. Later [5], they add the support of recursive state machines, however,
without giving an algorithm for CTL. Benedikt et al.[19] present the first solution for LTL
and even CTL* model checking for recursive state machines, which they call unrestricted
hierarchical state machines. Finally, Alur et al. and Benedikt et al. combine their findings
in a comprehensive paper [2], however, without adding many new results. Their work is
the basis for the algorithm of Fehnker et al. [44] and thus also for the algorithms presented
in this thesis.

When model checking recursive state machines, a seperation is made between single
entry and multiple entry state machines and between single exit and multiple exit state
machines. Benedikt et al. [19] show that k entries can be replaced by k machines with single
entries and are therefore equally expressive as multiple entry machines, and also equally
hard to model check. In contrast, Benedikt et al. show that multiple exit state machines
are more expressive than single exit one. They are also exponentially harder to model
check in the number of exit states. Finally, Benedikt et al. also compare recursive state
machines with pushdown systems and find that a multiple exit recursive state machine is
equally expressive as a pushdown automaton, while a single exit state machine is equally
expressive as context-free processes. Walukiewicz shows that these are equal to pushdown
automata with only one state [72].

Model checking of pushdown automata has been extensively studied by Esparza et al.
Here, the semantics of a pushdown automaton are defined via a pushdown system (PDS),
which is a usually infinite transition system comprising of the configurations of the push-
down automaton as states. First [21], they propose procedures for reachability, and model
checking with LTL, alternation-free µ-calculus, and the logic EF (propositional logic + the
EF operator). LTL model checking is done via a transformation of the negated formula
to an equivalent Büchi automaton and µ-calculus is model checked via so-called alter-
nating pushdown systems. Finally, they also analyze the compexity: While LTL and the
µ-calculus are DEXPTIME-complete in the size of the formula, the logic EF is in PSPACE. In
their first contribution, they do not relate their results to static analysis, yet. After some
preliminary considerations about model checking in the area of interprocedural dataflow
analysis [40], they propose efficient algorithms for model checking pushdown systems
with LTL [39]. They use these algorithms in a BDD-based LTL model checker for recur-
sive, boolean programs by modeling the programs as a symbolic pushdown system and
using their algorithm on it [42]. This finally results in the static analysis tool Moped [67].
The complexity of pushdown system model checking is further investigated by Bozelli
[23]. She proves that the problem is 2EXPTIME-complete for CTL* and EXPTIME-complete
for CTL.

Finkel et al. [48] provide a simple algorithm for computing the set of reachable con-
figurations of a pushdown automaton and use this algorithm for model checking these
automata with LTL and CTL*. They also show that CTL* model checking stays decidable
when allowing regular predicates on the stack content. Hristova et al. [53] propose a quite
different approach for LTL model checking of pushdown automata by using evaluation of
datalog rules.

4

1.2. Related Work

A benchmark comparing model checking using pushdown automata with recursive
state machines [3] is conducted by Alur et al. They propose algorithms for on-the-fly reach-
ability and cycle detection in recursive state machines. The proposed tool Vera which im-
plements these algorithms is benchmarked against Moped, resulting in a landslide victory
for Vera. This highlights the problem which BDD based model checking, when applied to
static analysis, has: It is often the case, that the size of the BDDs “explodes”.

Vardi et al. investigate in model checking of context free transition systems and prefix
recognizable transistion systems. As Benedikt et al. [19] have shown, the former are equiv-
alent to single exit recursive state machines. The approach of Vardi et al. is based on two
way alternating automata on infinite trees [71]. They represent the systems as infinite trees
with transitions between states specified by finite state automata. The model checking of
temporal formulae, which they specify in the µ-calculus [60], LTL [57], and CTL [61], is
conducted by an alternating two-way tree automaton navigating the infinite tree. Addi-
tionally, they enhance their approach by supporting global model checking in addition to
local model checking [64]. Finally, they further formalize their approach introducing tree
path automata and add support for fairness constraints and backward modalities [58].

Walukiewicz relates the model checking of pushdown automata using the propositional
µ-calculus with winning strategies in games on the graphs of the corresponding pushdown
process [72]. Later, he also investigates in model checking of pushdown automata with
CTL and EF [73]. He proves that the problem is PSPACE-complete for EF and EXPTIME-
complete for CTL.

Recently, Hague et al. [51, 33, 50] have investigated in model checking of higher order
pushdown systems in which each element in the stack is a stack itself. This model al-
lows for modelling higher order programs where functions can take other functions as
arguments. They use saturation methods and apply these to solve global model check-
ing problems using LTL and branching temporary logics. The model checking problem
is solved via the computation of winning regions of a parity game played over the push-
down system. Comparable techniques have also been studied before by Carayol et al. [34]
and Cachat [30, 32, 31].

Basler et al. present a very different approach for model checking pushdown systems
and boolean programs. They propose a SAT-based method performing bounded model
checking, as they argue that most practical PDSs are rather shallow [18]. They reach com-
pleteness by using so-called universal summaries, as proposed in [17].

The latest improvements in PDS model checking with CTL come from Song et al. [68].
They reduce the model checking problem to the emptiness problem in alternating Büchi
pushdown systems and solve this problem. They argue that their algorithms are more
efficient than other existing algorithms for CTL-based PDS model checking, and show this
in a benchmark experiment.

The techniques in this thesis work on recursive state machines and are therefore com-
parable to the techniques of Alur et al., especially since the algorithms in this thesis are
based on the ones of Fehnker et al. [44], which are in turn inspired by the work of Alur
et al. A big difference between their approach and ours is that we do not construct new
state machines during the model checking process implicitly encoding the call context.
Instead, we rely on the explicit tracking of call contexts and the gathering of labels in a
global knowledge base. While it is not investigated whether this representation yields per-
formance benefits, we think that it is a more natural representation of results which leads

5

Chapter 1. Introduction

to a clearer model checking process. We also conduct a formal proof of the correctness
of our algorithm. While also some contributions of Alur et al. contain proof fragments
(e.g., [2]), no really complete formal proof is conducted for the correctness of their algo-
rithms. Finally, we also contribute with an incremental refinement of the model checking
algorithm which tries to solve the local model checking problem (with respect to the initial
configuration) without having to consider the whole recursive state machine. Although
the worst case complexity remains the same, it is promising that “real-world” state ma-
chines behave benevolent, thus yielding a performance increase. In comparison to model
checking techniques for other models like pushdown automata, the advantage of the re-
cursive state machine approaches, when applied to static program analysis, lie in the fact
that a recursive state machine is the most intuitive model for the global control flow of a
program, resembling almost perfectly the control flow graph (including function calls).

Many of the theoretical concepts have also been implemented in a model checker or
whole static analysis suite. Concerning “usual” model checkers for finite state systems,
NuSMV [38, 37] is one of the most common ones. It is a symbolic model checker which
uses BDDs as an implicit representation of the state space, which allows to model check
very large state spaces efficiently. Bebop [13] is also a model checker which uses BDDs
but is able to model check boolean programs, which are equivalent to pushdown au-
tomata. Therefore, it can be used efficiently for interprocedural dataflow analysis. It is
based on an adaption of the reachability algorithm by Reps et al. [65, 66]. Bebop is used
as model checker for the SLAM toolkit [14, 12, 15, 16] for static analysis of C code. Further
model checkers for pushdown automata are the aforementioned Moped [67] and Mops
[36]. Based on Moped, Esarza et al. perform bytecode analysis of Java programs [70, 69].
Model checking of Java programs with pushdown systems was also performed earlier by
Obdrzálek [63]. The verification tool Blast [20] is especially suited for model checking C
code including pointers and can therefore even be used to model check memory safety
(i.e., the dereferenciation of a pointer which points to an invalid memory cell). The SPIN
model checker [52] allows specifications only in LTL and transforms them to a Büchi au-
tomaton which is used to conduct the checking. It is focused on the efficient verification
of asynchronous software systems. The Goanna tool [45, 46, 54] is used for static analysis
of C++ programs and is also the target for the implementation in the scope of this the-
sis. At the beginning, Goanna was using NuSMV as off-the-shelf model checker. Due to
the aformentioned BDD-size-explosion, it turned out that using an explicit model checker
would yield a huge performance gain over using NuSMV. Such model checker was intro-
duced with XMV, which uses explicit state space representation. The swap to this model
checker really yielded a performance increase by orders of magnitude. However, XMV
and thus Goanna does not use recursive state machines but uses only model checking of
usual Kripke structures on a per-function basis. The aim of this thesis is to enhance XMV
to add the missing support for model checking of recursive state machines.

There are many more contributions in this challenging field of research. Some of them fo-
cus on special model representations or aim at supporting a wider variety of systems (like
concurrent ones). Others propose new logics which are better suited for certain problems.
The list of publications in this field is almost endless, so the following further namings are
rather a selection instead of a comprehensive list.

Burkart et al. investigate in the model checking of different infinite-state systems, namely
context free processes [27], pushdown processes [28], infinite graphs defined by graph

6

1.3. Scope

grammars [26] and inifinite sequential processes [29].
La Torre et al. [62] extend the concept of the hierarchical state machines of Alur et al.

allowing also the labeling of boxes (i.e., calls) with atomic propositions which all locations
in the called sub-routine inherit. Therefore, these box labels can be used to model scopes
which makes the resulting model more expressive than usual hierarchical state machines.
The algorithms of Alur et al. for reachability in recursive state machienes are enhanced by
Chaudhuri [35] who proposes algorithms with less than cubic worstcase complexity.

Model checking of concurrent programs is, for example, investigated by Gnesi et al. [49]
using communicating UML state machines, Alur et al. [6] using communicating hierarchi-
cal state machines, and Esparza et al. [22] using communicating pushdown systems.

The model checking of open systems, that is, system communicating with the environ-
ment, as introduced by Vardi et al. [59] using the term module checking, is another topic of
intense research. The module checking of pushdown systems was, for example, investi-
gated by Bozelli et al. [24], Vardi et al. [10], and Ferrante et al. [47].

The addition of probablism to recursive structures was investigated by Esparza et al.
[41, 56] and Brázdil et al. [25] using probablistic pushdown automata, and Etessami et al.
[43] using recursive probablistic state machines.

The increase of expressiveness by allowing certain predicates based on the stack content
while still staying decidable is, for example, treated by Alur et al. by proposing the logic
CARET [4] which is able to reason about calls and returns and later introducing visibly
pushdown automata [7], which tie the pushing or popping of stack symbols only to spe-
cific input symbols and allow to specify pre- and postconditions of procedures effectively.
Finally, they propose nested words [8] as a way for exposing the call-return structure of a
program execution and treat programs as finite-state generators of regular languages of
these words [1], which allows them to check stronger requirements.

1.3. Scope

In this thesis, the model checking problem of checking recursive Kripke structures with
CTL is regarded. The expressiveness of the model is limited on purpose to allow very
fast execution of a large number of checks on large models. Precisely, the following three
limitations are applied:

• The location labels are fully atomic propositions depending on the syntax of the
program, that is, they cannot encode the valuations of variables at that point. For
example, the property “variable x is written” can be expressed, while it cannot be
expressed that “the value y is written to variable x” unless y is constant.

• The labels in the recursive structure depend only on the location and not on the
stack content. Calls also cannot be labeled in the chosen model. Thus, the labels on
the locations cannot represent any form of context.

• Only single exit and single entry recursive Kripke structures are regarded, since this
form suffices to model inter-procedural control flow naturally.

The basic algorithm in this thesis, which is depicted in Chapter 3, performs global model
checking by deciding the validity of a formula in all reachable configurations of an RKS. In

7

Chapter 1. Introduction

contrast, the incremental refinement depicted in Chapter 4 performs local model checking
with respect to the initial location of a specified sub-structure (i.e., the entry point of a
specific function).

The contribution of this thesis is threefold: It covers theoretical aspects like the formal-
ization and proof of correctness of the model checking algorithm and two practical aspects:
The implementation of the model checking algorithm in XMV and the research and imple-
mentation of an incremental refinement which is used to increase the performance of the
model checker.

The basic task of this thesis is to implement the approach of Fehnker et al. [44] into the
model checker XMV and improve it (both by improving the code and by improving the
formal concepts of the algorithm) to yield better performance.

The first aspect of this thesis is to implement the aforementioned approach into XMV,
thus yielding a model checker which is able to handle recursive Kripke structures.

Before the implementation can start, the approach must be formalized thoroughly. Es-
pecially the the sub-tasks split and merge are only explained very informally in [44]. These
sub-tasks must be formalized to be able to implement them. The formalized representation
can be found in Appendix A.

After the formalization is accomplished, the formalized algorithm can be implemented
into XMV. This includes four main tasks:

1. The input specification language of XMV, which almost exactly resembles the one of
NuSMV, has to be enhanced to allow the specification of recursive Kripke structures.

2. A suitable internal data representation for the abstract concepts of the approach has
to be found which yields high performance and low memory consumption.

3. The transformation of an input specification to the internal representation has to be
conducted. To yield additional performance, optimizations of the input specification,
like constant expression propagation and transformation of suitable case statements
to table-based lookups instead of nested if clauses has to be performed.

4. Finally, the formalized approach has to be implemented, working with the model
data representation.

An overview over the implementation concepts and challenges can be found in Chapter
5. In addition to the implementation of the algorithm, the non-recursive model checking
part of XMV was optimized during this thesis as well, often yielding a ten times speed-up
compared to the previous version.

The second part in the scope of this thesis is formal reasoning about the algorithm. The
goal is to demonstrate how the algorithm yields semantically correct results. This demon-
stration is to be formalized by a proof of correctness of the algorithm. To achieve this, the
execution semantics of a recursive Kripke structure have to be formalized first. This is
done in Chapter 2. Afterwards, the formal basis of the algorithm, namely the context of a
call stack and the equivalence of call stacks with respect to their context is elaborated. To
ease the formal proof and to make it more intuitive, the formalized algorithm is amended,
thus yielding a clearer and better understandable representation of the algorithm. During
the presentation of this amended algorithm, examples are given and the formal proof is
conducted step by step. This is depicted in Chapter 3.

8

1.4. Overview

The final part in the scope of this thesis is the improvement of the model checking algo-
rithm. A refinement has been invented which allows so-called incremental model checking.
The basic idea behind incremental model checking is to gain performance by not model
checking the recursive Kripke structure thoroughly but only the parts which are necessary
to yield a correct result for the initial configuration. Here, the challenge lies in maintaining
the partly results and deciding which very parts of the structures must be checked to yield
a correct result. The incremental refinement is depicted in Chapter 4. This refinement is
also implemented into XMV.

1.4. Overview

The rest of this thesis is structured as follows. In Chapter 2, the concepts on which the
algorithm is based, like Kripke structures, CTL, recursive Kripke structures, and ternary
logic, are defined. Chapter 3 starts with the introduction and reasoning about call contexts
and how they partition call stacks into equivalence classes. This chapter contains the pro-
posed model checking algorithm and the proof of its correctness. Chapter 4 presents an
incremental refinement of the algorithm from Chapter 3. In addition, the chapter discusses
the rationale for the performance increase offered by the incremental refinement and the
proof of its correctness. Chapter 5 depicts aspects of the algorithm’s implementation into
XMV and a brief evaluation. A conclusion and topics for possible future work are shown
in Chapter 6. The basic algorithm by Fehnker et al., including the formalization of split
and merge, which is a contribution of this thesis, is presented in Appendix A.

9

Chapter 2.

Recursive Kripke Structures

This chapter contains the definitions of the structures to be model checked and the defini-
tion of the temporal logic CTL which is used to model check these structures. The chapter
starts with the definition of Kripke structures on which recursive Kripke structures are
based. Afterwards, the syntax of the temporal logic CTL and its semantics are defined.
A reduction of the CTL operators to an orthogonal set of operators which suffice for per-
forming the model checking of all operators is conducted. Next, the syntax and semantics
of recursive Kripke structures are given. The semantics of CTL for recursive Kripke struc-
tures is introduced by defining a semantic Kripke structure corresponding to an RKS and
expressing the CTL semantics of RKSs by the semantics of CTL on the corresponding se-
mantic Kripke structure. Finally, ternary logic, which is needed for the model checking
algorithm, is introduced.

2.1. Kripke Structures

A Kripke structure, as proposed by Kripke [55], has the semantics of a non-deterministic
finite state machine. It consists of a set of states connected by transitions. Each state is
labeled with a possibly empty subset of all atomic propositions over which the structure is
defined.

Definition 2.1.1 (Kripke structure). A Kripke structureK over a set of atomic propositionsAP
is defined as K = (S, I, δ, µ) with:

• A set of states S

• A set of initial states I which satisfies ∅ 6= I ⊆ S

• A transition relation δ ⊆ S × S which is left-total, i.e., ∀s ∈ S . ∃s′ ∈ S . (s, s′) ∈ δ

• A state labeling µ : S → ℘(AP)

An atomic proposition p ∈ AP is also referred to as label. A state s is said to be labeled with p,
if p ∈ µ(s).

A path p in K is an infinite sequence s0, s1, s2, . . . of states from S which conforms to the
transition relation, that is, ∀i ∈ N . (si, si+1) ∈ δ. For each state s ∈ S, there is at least one path
which starts at s, due to the left-totality of δ. The set of all paths of a Kripke structure is denoted by
P. An execution of K is a path s0, . . . ∈ P where s0 ∈ I .

11

Chapter 2. Recursive Kripke Structures

1 int main(){
2 int x, y;
3 if(z()){
4 x = 5;
5 } else {
6 y = 2;
7 }
8 printf("X is %d",x);
9 }

if(z())

x = 5;

defX

y = 2;

defY

printf(...);

useX

int x,y;

(terminated)

Figure 2.1.: A C function and its corresponding Kripke structure

Kripke structures are used in model checking to represent the behaviour of a system.
The labels in a state represent properties which hold in this state. Although the usual
definition of Kripke structure restricts S to be finite, Definition 2.1.1 also allows Kripke
structures with an infinite number of states, especially since a (finite) recursive Kripke
structure may not correspond to a finite Kripke structure but to one with an infinitely
large number of states.

In the case of static program analysis, a Kripke structure usually models the control
flow graph of a function. In this scenario, safety properties of the code, like that there is no
null pointer dereferenciation or that no uninitialized variable is read, are usually checked.
Therefore, the states are labeled with specific propositions stating a relevant fact of that
state. For example, to check for whether a variable v is initialized before it is read, the
label defV would be inserted at states where v is written and useV would be inserted
where v is read.
Example: Figure 2.1 shows an example C function and its corresponding Kripke structure.
The structure has been labeled to check whether each local variable is initialized before it
is read. The figure depicts the notation that will be used in this work to visualize Kripke
structures: The states are circles or ovals and the transitions are arrows. The initial lo-
cations are those which have an incoming arrow originating from a black dot. In this
example, the set of initial locations I would consist only of the state “int x,y;”.

The figure also shows how the usual transformation of a C function to a Kripke structure,
which represents the control flow graph of this function, is conducted: Each statement of
the function becomes a state and transitions are inserted according to the control flow. For
example, in an if statement, control can either go to the then or to the else block, which
is depicted by two transitions from the if(z()) state in the example. If the else block is
missing, the second transition must directly go to the next statement after the if block.
After the final statement, a virtual “terminated” trap state is inserted. This is necessary
because the transition relation must be left total. It will be shown later how recursive
Kripke structures solve this problem without an extra trap state.

12

2.2. Computational Tree Logic (CTL)

In this example, the small text in the states shows from which statement in the function
a state originated. It has no semantic meaning. The bold text, in contrast, shows the labels
of a state. For example, the state “x = 5;” has a defX label, that is µ(“x = 5;”) = defX.

The label defX and useX are used on states where the variable x is written and read,
respectively. So, in this case, the Kripke structure would be defined over the set of atomic
propositions: AP = {defX,defY,useX,useY}. These labels can be used to test whether
the local variables are always initialized before they are used. To perform different checks,
other labels would be necessary.

2.2. Computational Tree Logic (CTL)

Computational Tree Logic (CTL) is a temporal logic which is usually used for verifica-
tion of hardware and software systems. It is based on propositional logic and extends it
by adding temporal operators — the so-called path quantifiers. The labeling of a Kripke
structure K represents properties which hold at certain states in the system modeled by
the structure. CTL Formulae are used to express temporal properties of the behaviour of
that system. They are based on the atomic propositions AP of the labeling of K.

Definition 2.2.1 (CTL Syntax). A formula ϕ over a set of atomic propositions AP is recurively
defined as follows:

ϕ ::= > | ⊥ | p ∈ AP | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ↔ ϕ

| EXϕ | EFϕ | EGϕ | EϕUϕ | AXϕ | AFϕ | AGϕ | AϕUϕ

The set of all CTL formulae over AP is denoted with CTLAP or merely with CTL if AP can be
inferred from the context.

The syntax constructs in the first line are the ones of propositional logic. Their semantics
are equal to those of the propositional logic, which are not re-narrated here. However, the
validity of these formulas is always regarded with respect to a certain state in the Kripke
structure. A proposition p ∈ AP holds in a state if p is a label in that state. > holds in every
state and ⊥ holds in none.

The remaining operators are path quantifiers. They can be classified into Existential
quantifiers, which start with an E and for-All quantifiers, which start with an A. E quanti-
fiers require that the property holds on at least one path, while A quantifiers require that
the proprery holds on all possible paths. The second letter of the quantifiers determine on
what part of a path the property must hold: X states that the property must hold in the
neXt state on the path, F states that the property holds on at least one state on the path
(Finally). G represents a property which must hold Globally, i.e. in each state on the path.
U is the only binary path quantifier. It states that the first property must hold Until the
second holds. Note that the second property must appear somewhere on the path, i.e. an
infinite path where only ψ holds forever but not χ does not satisfy ψUχ. Some definitions
use another binary quantifier to state that either the first argument holds forever, or at least
until the second holds. This quantifier is often called Weak until. Definition 2.2.2 describes
the CTL semantics formally.

13

Chapter 2. Recursive Kripke Structures

Definition 2.2.2 (CTL Semantics). Let ϕ be a CTL formula and K = (S, I, δ, µ) a Kripke struc-
ture, both over a set of atomic propositions AP . Let B = {t, f} be the set of Boolean logic values. ϕ
is said to hold or be valid in a state s, written as K, s |= ϕ, if the following conditions, based on the
structure of ϕ, hold:

K, s |= > ⇒ t

K, s |= ⊥ ⇒ f

K, s |= p ⇒ p ∈ µ(s)

K, s |= ¬ψ ⇒ K, s 6|= ψ

K, s |= ψ ∨ χ ⇒ K, s |= ψ or K, s |= χ (∧,→,↔ analogous)
K, s0 |= EXψ ⇒ ∃s0, s1, . . . ∈ P .K, s1 |= ψ

K, s0 |= EFψ ⇒ ∃s0, s1, . . . ∈ P . ∃i ∈ N .K, si |= ψ

K, s0 |= EGψ ⇒ ∃s0, s1, . . . ∈ P . ∀i ∈ N .K, si |= ψ

K, s0 |= EψUχ ⇒ ∃s0, s1, . . . ∈ P . ∃k ∈ N .K, sk |= χ ∧ ∀i ∈ {0, . . . , k − 1} .K, si |= ψ

K, s0 |= AXψ ⇒ ∀s0, s1, . . . ∈ P .K, s1 |= ψ

K, s0 |= AFψ ⇒ ∀s0, s1, . . . ∈ P . ∃i ∈ N .K, si |= ψ

K, s0 |= AGψ ⇒ ∀s0, s1, . . . ∈ P . ∀i ∈ N .K, si |= ψ

K, s0 |= AψUχ⇒ ∀s0, s1, . . . ∈ P . ∃k ∈ N .K, sk |= χ ∧ ∀i ∈ {0, . . . , k − 1} .K, si |= ψ

A formula ϕ holds for a Kripke structure K, written as K |= ϕ, if it holds in all initial states:

K |= ϕ⇔ ∀s ∈ I .K, s |= ϕ

The solution set JϕKK ⊆ S of a formula ϕ in a Kripke structure K is defined as the set of all
states in which ϕ is valid:

JϕKK = {s ∈ S | K, s |= ϕ}

Example: Figure 2.2 shows an example Kripke structure K over the atomic propositions
AP = {p, q, r, s}. To check if a formula holds for this structure, one must check if it holds
in the initial location at the top. The following formulae will exemplify the semantics of
the operators:

K |= AXp The formula holds because all paths from the initial state have a p in the succes-
sor state of the initial state.

K |= EXp Holds because there exists a path where p holds in the successor state of the
initial state. Can also be inferred from the previous example, because of the tautology
AXψ ⇒ EXψ.

K |= ApUq All paths have p labels in all states until a q label is reached in the state at the
bottom.

K |= EGr There exists a path, in which r holds in every state.

K 6|= EGp There exists no path, in which p holds globally, since all paths reach the state at
the bottom which has no p label.

14

2.2. Computational Tree Logic (CTL)

p,r

p p,r

q,r

r,s

Figure 2.2.: A Kripke structure

K |= AFq All paths eventually enter the bottom state which has a q label.

K 6|= AFs Does not hold, because there exists a path which never reaches the state on the
right with the s label. This is the path which stays infinitely in the bottom state.

K |= AXAXEGq Holds, because all paths reach the bottom state after two steps. In this
state, there is a path in which q holds globally. This is again the path which stays
infinitely in the bottom state.

K |= ApU(EqUs) Holds, because EqUs holds in the bottom state and p holds on all paths
until the bottom state is reached.

A program which determines the validity of a given CTL formula for a given Kripke
structure is usually called model checker, because it checks properties of the Kripke structure,
which is usually a model of the behaviour of a system. In the case of static program analysis,
the model checker checks properties of the control flow of a program.
Example: Again consider the Kripke structure for a C function in Figure 2.1 on page 12. As
mentioned, the structure has been labeled to check whether each local variable is initialized
before it is read. The label defX and useX are used on states where the variable x is written
and read, respectively. To check that x is never used before it is initialized, the formula
¬E¬defX U useX can be used. Informally, the formula states the following: No path may
exist (¬E) on which x is never defined (¬defX) before it is read (U useX). In the example,
this formula does not hold, because the else branch does not initialize x. Therefore, a
static program analysis tool would emit a warning.

15

Chapter 2. Recursive Kripke Structures

2.3. Minimal Representation of CTL

The path quantifiers of CTL are not orthogonal which means that some quantifiers can be
expressed through others. In fact, it is possible to use only a minimal set of three quantifiers
and express all others by means of them. This has two advantages:

1. A model checker only has to include algorithms to solve the remaining quantifiers
instead of all.

2. An efficient algorithm for one quantifier can be used to solve other quantifiers for
which only less efficient algorithms exist.

3. Structurally recursive functions have to incorporate only three cases for the path
quantifiers and can therefore be specified and proven with less effort.

Hereinafter, the quantifiers are reduced to EX, EG, and EU. The algorithms will only be
defined for these. A formula which contains other quantifiers has to be transformed into an
equivalent reduced formula. The following equivalences are used for the transformation:

EFψ ⇔ E>Uψ
AXψ ⇔ ¬EX¬ψ
AFψ ⇔ ¬EG¬ψ

AGψ ⇔ ¬E>U¬ψ
AψUχ⇔ ¬((E¬χU¬(ψ ∨ χ)) ∨ EG¬χ)

In addition, the propositional logic operators are also reduced to ∨ and ¬ with the fol-
lowing equivalences:

ψ ∧ χ⇔ ¬(¬ψ ∨ ¬χ)

ψ → χ⇔ ¬ψ ∨ χ
ψ ↔ χ⇔ (ψ → χ) ∧ (χ→ ψ)⇔ ¬(¬(¬ψ ∨ χ) ∨ ¬(¬χ ∨ ψ))

Finally, the constant⊥ is also expressed as ¬> to further reduce the amount of structural
cases. Thus, the reduced set of operators which is used for the recursive model checking
presented in this thesis is the following:

ϕ ::= > | p ∈ AP | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | EϕUϕ

2.4. Recursive Kripke Structures

The previous section depicted examples how Kripke structures and CTL can be used in
static program analysis to check properties of a function. This approach bears the problem
that the Kripke structure only represented the local control flow of one single function.
Thus, only local intra-procedural properties can be checked. However, many of the prob-
lems to be detected by static program analysis need to consider the inter-procedural global
control flow.

16

2.4. Recursive Kripke Structures

To consider global control flow, a model must be built which reflects the whole structure
of the program, not only a single function. The naïve idea would be to build a Kripke
structure for the whole control flow graph of a program by replacing each function call
with the states which represent the body of a function. This can be regarded as inlining
all functions. The problem is that this Kripke structure would become very large, because
n calls of the same function would introduce the states for this function (and all functions
called by it) n times. In addition, the resulting Kripke structure would even become infinite
in case of recursive calls.
Example: Consider the C program shown in Figure 2.3, which is to be called P . It consists
of a main function which calls the second function a two times. The second function calls
b. The goal is to create a model of program P to check global properties.

The left side of Figure 2.4 shows the Kripke structures which would result for the three
functions, without considering global control flow. The states are named according to the
line number in the function (e.g., state a2 represents the statement in line 2 of function a).
The termination state of the functions is denoted with *t (with * replaced by the name of
the sub-structure). The right side of the figure shows a Kripke structure representing the
global control flow of P . As already said, the duplicate call to a results in the duplication
of all states of a and all functions called by it.

Due to the resulting state explosion, it cannot be feasible to conduct model checking of
real programs, which consist of ten-thousands of functions, by inlining. Therefore, a better
model has to be found which can represent the global control flow of a program more
compactly. Such a model is the recursive Kripke structure (RKS).

Instead of inlining the calls of other functions into one big structure, the local control
flow graphs of each function are kept separate: An RKS R for a program P is a set of
such separate structures, which are called sub-structures S of R, and a dedicated initial
sub-structure which depicts the “main” function which starts P . Sub-structures can call
other sub-structures of R with special call states. A call state c has no labels but instead
has a call target ν(c) representing the sub-structure called by this state. States which are no
call states are denoted as locations. The sub-structures have no termination state anymore.
Instead, they have a specific exit location lout which has no outgoing transition. Definition
2.4.1 shows the formal definition of an RKS.

Definition 2.4.1 (Recursive Kripke Structures). A Recursive Kripke Structure R over a set
of atomic propositions AP is a tuple (S, Sin), where S is a set of sub-structures and Sin ∈ S is the
initial sub-structure. Each sub-structure S ∈ S is a tuple (L, lin, lout, C, δ, µ, ν) with

• a set of locations L,

• an entry location lin ∈ L,

• an exit location lout ∈ L,

• a set of calls C,

• a transition relation δ : (L ∪ C)× (L ∪ C)

• a labeling µ : l→ ℘(AP),

17

Chapter 2. Recursive Kripke Structures

1 int main(){
2 int x = a(2);
3 x += 2;
4 x = a(x);
5 printf("%d",x);
6 }

1 int a(int i){
2 int x = 3 + i;
3 x = b(x);
4 return x;
5 }

1 int b(int i){
2 if(i > 3){
3 i = 0;
4 }
5 return i;
6 }

Figure 2.3.: C program with three functions

m2

m3

m4

m5

a2

a3

a4

at

mt

b2

b3

b5

bt

m2

m3

m4

m5

a2

a3

a4

mt

b2

b3

b5

a2

a3

a4

b2

b3

b5

main a b P

Figure 2.4.: A Kripke Structure for the program from Figure 2.3

18

2.4. Recursive Kripke Structures

• and a call target mapping ν : C → S

The transition relation δ satisfies the following requirements:

∀s ∈ (L ∪ C) \ {lout} . ∃s′ ∈ (L ∪ C) . (s, s′) ∈ δ (2.1)
@s ∈ L ∪ C . (lout, s) ∈ δ (2.2)
@c, c′ ∈ C . (c, c′) ∈ δ (2.3)
∀c ∈ C, l, l′ ∈ L . ((c, l) ∈ δ ∧ (c, l′) ∈ δ)⇒ l = l′ (2.4)

The components L, C, lin, lout of a specific sub-structure S are denoted by L(S), C(S), lin(S),
and lout(S), respectively. The components δ, µ, ν of a specific S are denoted by δS , µS , and νS ,
respectively.

The sets of locations and calls of the sub-structures of K are all disjunct:

∀S ∈ S . L(S) ∩ C(S) = ∅
∀S, S′ ∈ S . S 6= S′ ⇒ (L(S) ∩ L(S′) = ∅ ∧ C(S) ∩ C(S′) = ∅ ∧ L(S) ∩ C(S′) = ∅)

The set of all locations and calls of all sub-structures of R is denoted by L(R) and C(R), respec-
tively:

L(R) =
⋃
S∈S

L(S)

C(R) =
⋃
S∈S

C(S)

The sub-structure in which a specific call c or location l is located is denoted by S(c) or S(l),
respectively. The sub-structure called by a call c is denoted by S←c and the successor location of a
call c is denoted by lsucc(c). :

c ∈ C(S(c))

l ∈ L(S(l))

S←c = νS(c)(c)

(c, lsucc(c)) ∈ δS(c)

The set of sub-structures ofR = (S, Sin) is written as S(R). The class of all RKSs is denoted by R.

As the definition states, a sub-structure S is comparable to a usual Kripke structure with
a few modifications. First, the set of states of the sub-structure consists of locations L
and calls C and only one initial location lin exists, instead of a set of initial locations. A
call c ∈ C has a specific call target ν(c). In addition, its transition relation δ is not left
total anymore, because no outgoing transition from lout exists. Concerning calls, there are
more restrictions for the transition relation: First, no two calls may be behind each other
(Equation 2.3). Second, a call must have exactly one successor location (Equation 2.4).
Note that these restrictions, together with the restriction that only one initial location per
sub-structure may exist, are only introduced to make the model checking algorithm easier
to be grasped and proven.

A program P consisting of a set of functions can be transformed into an RKS by trans-
forming the control flow graph of each function to a sub-structure. Each statement which

19

Chapter 2. Recursive Kripke Structures

calls another function becomes a call in the respective sub-structure and the call target of
that call becomes the sub-structure which was built for the called function. In the graph-
ical notation, squares will be used instead of circles to represent call states. The text in a
call-state c will represent the call target sub-structure S←c . The exit location lout will be
depicted by a location which has an outgoing transition to a small filled double circle ().

Note that it is often necessary to insert virtual locations to satisfy the definition of an
RKS. For example, if the first statement in a function is a function call, then a virtual loca-
tion has to be generated before that call, because the initial location lin of a sub-structure
may not be a call. Likewise, two successive call statements cannot be mapped to two suc-
cessive calls in the sub-structure. Instead, a virtual location must be inserted between the
calls. The only CTL formulae where the insertion of extra locations could yield problems
are formulae of the form EXψ or AXψ. However, these formulae are not useful for static
program analysis anyway, because it is not exactly defined what “the next step” of a pro-
gram is.
Example: In contrast to the naïvely constructed large Kripke structure from Figure 2.4, an
RKS for program P from Figure 2.3 is to be constructed. Figure 2.5 shows the graphical
representation of this RKS.

m2

m4

m5

a2

a3

a4

b2

b3

b5

M A B

m2c

A()

m4c

A()

a3c

B()m3

Figure 2.5.: The sub-structures of an RKS modeling the program from Figure 2.3

The RKS R = ({M,A,B},M) consists of three sub-structures S = {M,A,B}, one for
each function, with the M sub-structure being the initial one. The function calls are now
modeled as call states (rectangles) and a preceding location. The called sub-structure is

20

2.4. Recursive Kripke Structures

written in the rectangle. For example, the text A() in the call m2c in sub-structure M
represents that νM (m2c) = S←m2c = A. The dashed arrows represent this fact. They will
be left out in further examples. In this example, the sub-structure M would be specified
as:

m = (L, lin, lout, C, δ, µ, ν)

L = {m2,m3,m4,m5}
lin = m2

lout = m5

C = {m2c,m4c}
δ = {(m2,m2c), (m2c,m3), (m3,m4), (m4,m4c), (m4c,m5)}
µ = ?

ν(m2c) = ν(m4c) = A

Note that µ has not been specified as no specific set of labels to be generated was chosen.

As shown, the definition of an RKS can be used to model interprocedural control flow
conveniently without having to inline functions which would possibly cause a state space
explosion. The important aspect of RKSs which needs to be specified is the semantics of
their execution (i.e., what a path in an RKS is). According to these semantics, the meaning
of the validity of CTL formulae when applied to an RKS can be defined and a model
checker can be built which checks this validity.

The informal execution semantics of an RKS reflect what can be inferred intuitively from
the control flow of the associated program: An RKS can “take a transition” between two
locations which are connected by δ, just like a usual Kripke structure. In addition, if it
takes a transition from a location to a call, it enters the sub-structure which is the target
of that call, starting in the initial location of that sub-structure. Once the RKS reaches an
exit location, it returns to the sub-structure which called the current one. This shows that
the RKS has to “remember” from which sub-structure the current one was called. Once
the initial sub-structure reaches its exit, the RKS “terminates”. That is, it gets stuck in a
termination trap state.

The formal semantics of the execution of an RKS are quite close to those of a pushdown
automaton. The configuration of an RKS at a given step during its execution is a pair
(σ, l) of a location l in a sub-structure S and the call stack σ which led to S. The call stack
is a stack of calls which were entered to reach the current sub-structure S. A transition
from a location to a successor location changes only the location of the configuration. A
transition from a location to a successor call pushes that call onto the stack and enters the
initial location lin of the called sub-structure. A transition from an exit location lout pops
the topmost call from the stack and enters the successor location of that call. Definition
2.4.2 depicts the formal definition of a call stack and an RKS configuration.

Definition 2.4.2 (RKS Configuration). Let R = (S, Sin) be an RKS with sub-structures S =
(L, lin, lout, C, δ, µ, ν). A call stack σ = [c1, . . . , cn] of R is a sequence of calls ci. The first call
c1 = cin is a special virtual initial call, which calls sub-structure Sin and is not contained in any

21

Chapter 2. Recursive Kripke Structures

sub-structure:

S←cin = Sin (the call target of cin is Sin, by definition)

cin /∈ C(R)

All further calls ci with i ∈ {2, . . . , n} are located in the sub-structure called by ci−1:

∀i ∈ {2, . . . , n} . ci ∈ C(S←ci−1)

The ⊕ operator is used to push a call to the top of a stack:

[c1, . . . , cn]⊕ c = [c1, . . . , cn, c]

The set of all call stacks of R is denoted by S (R). A callstack σ = σ′ ⊕ c is said to call a sub-
structure S, written as S←σ, if S is the target of the topmost call c in σ:

S←σ′⊕c = S←c

A configuration (σ, l) of R consists of a non-empty call stack σ = [c1, . . . , cn] ∈ S (R) and a
location l ∈ L(S←cn) or it is a special termination configuration ([], lterm). The location lterm is a
special virtual location which is not contained in any sub structure:

lterm /∈ L(R)

The successor location lsucc(cin) of the initial call cin is defined to be lterm:

lsucc(cin) = lterm

The initial configuration of an RKS is defined as ([cin], lin(Sin)). The set of all configurations of
R is denoted by C(R).

Note that the definition of a call stack already enforces that this stack is reachable, which
means that, starting from the initial configuration ([cin], lin(Sin)), each call ci in the stack is
in the set of calls C(S(ci − 1)) of the sub-structure S(ci − 1) of the call before it.

To define the semantics of CTL formulae, the notion of a path in an RKS R has to be
defined. This is simply a list of configurations which conforms to the informal execution
semantics. Instead of defining the path directly, a so-called semantics Kripke structure
K(R) of R is defined over the configurations of R. Then, a CTL formula holds for R if it
holds inK(R). The transition relation ofK(R), which is inferred from the informal seman-
tics, defines formally how paths can look like. Definition 2.4.3 shows the CTL semantics
for RKSs by first defining an associated Kripke structure and using this structure to define
the semantics.

Definition 2.4.3 (CTL Semantics for RKSs). Let K = (S, Sin) be an RKS over atomic proposi-
tions AP . The semantics Kripke structure K(R) = (S, I, δ, µ) of R is a Kripke structure over
AP with:

• A set of states S = C(R)

• A set of initial states I = {([cin], lin(Sin))}

22

2.4. Recursive Kripke Structures

• A labeling function µ : S × ℘(AP) which reflects the labeling ofR. The labeling function µ
is defined as follows:

µ((σ, l)) =

{
µS(l)(l) if l ∈ L(R)

∅ if l = lterm

• A transition relation δ : S × S . For two configurations (σ, l) and (σ′, l′), ((σ, l), (σ′, l′)) is
in δ if and only if one of the following formulae holds:

(l, l′) ∈ δS(l) ∧ σ = σ′ (2.5)

∃c ∈ CS(l) . (l, c) ∈ δS(l) ∧ S←c = S(l′) ∧ l′ = lin(S(l′)) ∧ σ′ = σ ⊕ c (2.6)

∃c ∈ CS(l′) . (c, l′) ∈ δS(l′) ∧ S←c = S(l) ∧ l = lout(S(l)) ∧ σ = σ′ ⊕ c (2.7)

l = lout(Sin) ∧ l′ = lterm ∧ σ = [cin] ∧ σ′ = [] (2.8)
l = l′ = lterm ∧ σ = σ′ = [] (2.9)

A CTL formula ϕ holds for a configuration (σ, l) of an RKS R, if it holds for that configuration
in the associated Kripke structure K:

R, (σ, l) |= ϕ⇔ K(R), (σ, l) |= ϕ

As already mentioned, the most important part of the semantics Kripke structure is the
transition relation δ which defines how executions of that RKS, and thus paths, may look
like. Consider a configuration (σ ⊕ c, l):

1. The RKS can move to a successor location l′ of l without altering the call stack (Equa-
tion 2.5). The resulting configuration is (σ ⊕ c, l′).

2. The RKS can take a transition from a location to a successor call c′ (Equation 2.6). In
this case, the call is pushed onto the stack and the location is the initial location of
the called sub structure: (σ ⊕ c⊕ c′, lin(S←c′))

3. The RKS can return from a sub-structure S if the current location l is the exit location
lout(S) (Equation 2.7). In this case, the topmost call is popped from the stack and the
execution continues in the successor location of that call: (σ, lsucc(c))

4. Finally, when reaching the exit location of the initial sub-structure while only having
the initial call cin on the call stack, the RKS enters and gets stuck in the trap termina-
tion configuration ([], lterm) (Equations 2.8 and 2.9).

Example: Consider again the RKS from Figure 2.5 on page 20. Here, the initial configuration
is ([cin],m2). From this configuration, the RKS can enter the call m2c, thus yielding the con-
figuration ([cin,m2c], a2). After going through state a3 with configuration ([cin,m2c], a3),
it would enter call a3c, yielding configuration ([cin,m2c, a3c], b2). When taking the “else
branch” in function b, the next configuration would be ([cin,m2c, a3c], b5). Now, the RKS
would return the first time from a function, thus popping of the topmost call a3c from
the call stack and entering its successor location a4. The resulting configuration would be

23

Chapter 2. Recursive Kripke Structures

([cin,m2c], a4). Since a4 is also an exit location, the execution would return again, yielding
([cin],m3). A complete path in K(R) starting from the initial configuration looks like this:

([cin],m2), ([cin,m2c], a2), ([cin,m2c], a3), ([cin,m2c, a3c], b2),
([cin,m2c, a3c], b5), ([cin,m2c], a4), ([cin],m3), ([cin],m4),
([cin,m4c], a2), ([cin,m4c], a3), ([cin,m4c, a3c], b2), ([cin,m4c, a3c], b3),
([cin,m4c, a3c], b5), ([cin,m4c], a4), ([cin],m5), ([], lterm),
([], lterm), ([], lterm), ([], lterm), . . .

The semantics Kripke structureK(R) of an RKSR is basically the unrolled Kripke struc-
ture of a program, as was shown on the right side of Figure 2.4. As already stated, the
goal is to explicitly avoid computations with that Kripke structure, because it may have an
infinite number of states in the case of recursive functions: Each recursive call pushes itself
onto the call stack, yielding an infinite amount of configurations with growing stack size.
Therefore, the semantics Kripke structure is only used to define the intuitive semantics
formally. The goal of the algorithm developed in this thesis is to model check an RKS R
with respect to a CTL formula ϕ without having to construct the semantics Kripke struc-
ture K(R), while still yielding the same results as model checking of K(R) would have
yielded.

2.5. Ternary Logic

The validity of a formula at a given location is expressed in Boolean logic. Either the
formula holds, or it does not hold. During the incremental checking of a formula, a third
logic value must be added, which states the absence of a safe conclusion. This third value
states that a formula may hold.

While the Boolean logic values of true and false are denoted by t and f , respectively, the
third maybe value is denoted by m.

Ternary logic is consistent with Boolean logic, which means that ternary logic formula
will yield the same result as an equivalent Boolean logic formula as long as all propositions
are either t and f . The result only differs in the presence of m values.

Definition 2.5.1 defines the ternary logic by using only the operators ∨ and ¬ to define
ternary logic. Other operators are inferred from the two operators, as already shown in
Section 2.2. In addition, a “join” operator ./ is defined which has no equivalent operator
in Boolean logic.

Definition 2.5.1 (Ternary Logic). Let a, b ∈ T be ternary logic values with T = B ∪ {m}.

The binary operator ∨ : T× T→ T is defined as follows:
a ∨ b = t if a or b is t, a ∨ b = f if a and b are f , otherwise a ∨ b = m.

The unary operator ¬ : T→ T is defined as follows:
If a is t, then ¬a = f . If a is f , then ¬a = t. Otherwise, ¬a = m.

The binary operator ∧ : T× T→ T is defined as a ∧ b = ¬(¬a ∨ ¬b).

24

2.5. Ternary Logic

The binary operator⇒: T× T→ T is defined as a⇒ b = ¬a ∨ b.

The binary operator⇔: T× T→ T is defined as a⇔ b = (a⇒ b) ∧ (b⇒ a).

The binary operator ./: T× T→ T is defined as follows:
a ./ b = t, if a and b are t, a ./ b = f if a and b are f , otherwise a ./ b = m.

This definition is consistent with the natural interpretation: If it is unknown if a propo-
sition a holds (a = m), then it is also unknown whether the negation of a holds (¬a = m).
For the logical-or operator ∨, having one t value is enough to decide a ∨ b = t, even if the
other value is unknown. If one value is unknown and the other one is f , then the result of
a ∨ b is also unknown, because it depends on the value of the unknown operand.

25

Chapter 3.

Model Checking Recursive Kripke Structures
with CTL

This chapter describes an algorithm for model checking RKSs with CTL. First, the algo-
rithm of Fehnker et al., on which this algorithm is based, is explained. Afterwards the
conceptual basis for the algorithm is laid out with the definition and reasoning about call
contexts and the knowledge base. Afterwards, the algorithm is defined formally and its
correctness is proven. Finally, differences to the algorithm of Fehnker et al. and reasons for
those differences are described.

3.1. The Basic Approach

The model checking algorithm presented in this chapter and refined in the next chapter
is based on the algorithm of Fehnker et al. [44], which is presented in Appendix A and
is hereinafter referred to as basic approach or basic algorithm. For this thesis, the basic al-
gorithm was amended drastically thus almost yielding a new algorithm. The motivation
behind this was to give a more natural representation of the model checking process. How-
ever, the amending of the algorithm does not yield any performance increase, it is merely
only a conceptual change which helps during the explanation and proof of correctness of
the algorithm. Therefore, the algorithm in this chapter was not implemented into XMV.
Instead, only the basic algorithm and the incremental refinement presented in the next
chapter were implemented.

The basic algorithm and the algorithm presented in this chapter both perform model
checking of a nested CTL formula bottom up, that is, starting from the innermost sub-
formulae. For example, the formula AGEGEFp would be checked in the order p, EFp,
EGEFp, AGEGEFp. This bottom up checking ensures that the model checking results for
all subformulae of a formula ϕ are available when checking ϕ. For example, when model
checking EGEFp, the results for EFp are already available. The difference between the algo-
rithms lies in how these results are represented. In the basic algorithm, the result of model
checking an RKSR with respect to a formula ϕ is a new RKSR′ which has ϕ as an atomic
proposition. That is, each location where ϕ holds is labeled with ϕ in R′. The different
contexts under which the same sub-structure S may be called in R are incorporated in R′
by multiple copies of S. Thus, the number of sub-structures of R′ is usually greater than
the number of sub-structures ofR. In contrast, the algorithm presented here uses a global
storage of information, the so-called knowledge base κ, instead of “weaving” the results
for subformulae into the RKS itself. The knowledge base explicitly maps pairs of locations
l and contexts θϕ with respect to a formula ϕ to the validity of that formula in location l

27

Chapter 3. Model Checking Recursive Kripke Structures with CTL

when called under context θϕ. It is believed that this separation of model checking results
from the structure of the RKS yields a conceptually clearer algorithm.

In contrast, the step of model checking a formula ϕ once all results for subformulae of ϕ
are known is similar in the two algorithms. The only changes here are that the temporal
operator EX is not solved by local model checking and that the algorithmic representation
differs, because the validity of subformulae is looked up from κ instead of being repre-
sented as labels in the RKS.

3.2. Overview

The algorithm for model checking of RKSs presented here reduces the global problem
of solving a formula for the whole RKS to a local problem which solves a formula for
only a sub-structure disregarding all other structures except some assumptions about sub-
structures which are called by the currently considered sub-structure. This has the advan-
tage, that the underlying semantic Kripke structure of an RKS does not have to be con-
structed. The construction might be impossible anyway, because the underlying Kripke
structure is infinite in the case of recursive calls.

The local checking is conducted by building an associated Kripke structure from a sub-
structure S to be checked1 and the context under which S is called. A labeling is chosen
for the built Kripke structure which reflects the labeling of S, the context under which
S is called, and the assumptions about sub-structures which are called by the calls in S.
The context is represented by information about the validity of the formula to be checked
and all its subformulae in the successor location of the exit location of the sub-structure.
It is shown that this information is enough to fully specify all relevant information of the
context.

Because the information about called sub-structures is incomplete at the beginning,
ternary logic must be used where a value of m specifies yet missing information. If no
assumption about a called sub-structure can be given yet, a special m label is inserted into
the associated Kripke structure. The local model checking is repeated iteratively for all
sub-structures and yields more and more results in each step, because more and more as-
sumptions about called sub-structures are decided and do no longer have to be labeled m.
Once no more new results can be found, the iteration terminates. The validity values ob-
tained during the model checking process are inserted into the so-called knowledge base.
If one iteration of the process is treated as a function f which receives a knowledge base
and returns a knowledge base with the results from this iteration included, then the algo-
rithm effectively computes the smallest fixed point of f . If still some results are missing
once this fixed point is found, they can be decided trivially based only on the temporal
operator which is currently checked. Thus, once the algorithm has finished the model
checking of a formula ϕ, the knowledge base includes the validity of ϕ in each reach-
able configuration of the RKS. This information is then used for model checking formulae
which include ϕ as subformula, like EGϕ.

1Note that the associated Kripke structure of S may not be mistaken for the semantic Kripke structure for R.
While the former is constructed explicitly by the algorithm, the construction of the latter must be avoided.

28

3.3. Preliminary Considerations

3.3. Preliminary Considerations

In this section, important concepts which are used by the algorithm, like the call context,
how to obtain the context under which a sub-structure is called, and the knowledge base
are defined and explained. In addition, important properties about call stacks and their
corresponding call contexts are proven, forming the conceptual basis for the correctness of
the algorithm.

3.3.1. Call Context

The most important aspect, on which the whole algorithm is built, is the call context. A
call context is used while checking a sub-structure locally. It defines in which context
the sub-structure is to be checked. The call context in which a sub-structure is checked
defines which formulae hold in the successor location of the call calling that sub-structure.
Because a sub-structure can be called by more than one call, it is necessary to check such
sub-structure under different contexts. A call context is defined as follows:

Definition 3.3.1 (Call Context). A call context θ over a set of atomic propositions AP is defined
as a CTL formula overAP where each subformula τ is annotated with a context assumption η ∈ T:

θ ::= 〈η〉τ
τ ::= > | p | ¬θ | θ ∨ θ | EXθ | EGθ | EθUθ

where p ∈ AP .
A call context containing a specified associated CTL formula ϕ is denoted as θϕ and satisfies:

ϕ = θϕ{〈η〉τ 7→ τ} (3.1)

where X{A 7→ B} denotes the replacement of all occurrences of A in X with B.
The class of all call contexts is denoted by Θ.

As the definition states, a call context θϕ is an annotated CTL formula ϕ. The associated
formula ϕ can be obtained for such context by stripping off the context assumptions, as
shown in Equation 3.1. For example:

θϕ = 〈t〉EG(〈f〉E〈t〉pU〈f〉q)⇒ ϕ = EG(EpUq)

The “inline” notation of the context assumptions is often hard to read. Therefore, a tree-
like structure can be used to visualize a call context:

〈t〉EG(〈f〉E〈t〉pU〈f〉q) = 〈t〉EG

〈f〉EU

〈t〉p 〈f〉q

As mentioned, a formula context for a sub-structure S represents a set of formulae which
hold in the successor location of a call calling S: All subformulae annotated with 〈t〉 hold,
those which are annotated with 〈f〉 do not hold. If a context contains 〈m〉 assumptions,

29

Chapter 3. Model Checking Recursive Kripke Structures with CTL

then it is yet unknown whether the corresponding formula holds. The aforementioned
context

〈t〉EG

〈f〉EU

〈t〉p 〈f〉q

states that the formulae p and EG(EpUq) hold, while EpUq and q do not hold.
Note that not all contexts are reasonable. For example, the context 〈f〉E〈t〉pU〈t〉q would

imply that the proposition q holds in the successor location but EpUq does not, which
is a contradiction. Also, the context 〈f〉> is unreasonable since > always holds. Such
impossible contexts are called inconsistent. Although the algorithm sometimes produces
such inconsistent contexts as intermediary results, the overall result is still correct.

Each reachable call stack of an RKS can be assigned an associated call context which is
defined as follows:

Definition 3.3.2 (Call context of a call stack). Let σ = σ′ ⊕ c be a non-empty call stack of an
RKS R and let ϕ be a CTL formula. The predicate valid(ϕ, σ) : CTL ×S (R) → B denotes the
validity of ϕ in (σ′, lsucc(c)):

valid(ϕ, σ′ ⊕ c) = (R, (σ′, lsucc(c)) |= ϕ)

The call context θϕ(σ) of σ for ϕ is defined recursively over the structure of ϕ as follows:

θϕ≡>(σ) = 〈t〉>
θϕ≡p(σ) = 〈valid(ϕ, σ)〉p
θϕ≡¬ψ(σ) = 〈valid(ϕ, σ)〉¬θψ(σ)
θϕ≡ψ∨χ(σ) = 〈valid(ϕ, σ)〉(θψ(σ) ∨ θχ(σ))
θϕ≡EGψ(σ) = 〈valid(ϕ, σ)〉EGθψ(σ)
θϕ≡EXψ(σ) = 〈valid(ϕ, σ)〉EXθψ(σ)
θϕ≡EψUχ(σ) = 〈valid(ϕ, σ)〉Eθψ(σ)Uθχ(σ)

The definition formalizes what was already stated informally above: A call context θϕ(σ)
for a formula ϕ and a call stack σ = σ′ ⊕ c describes which subformulae of ϕ hold in the
configuration which is reached after the topmost call c “returns”.

Note that by definition, the call context of a call stack never contains m assumptions,
because the predicate valid can either be t or f . The algorithm however, will use contexts
with m assumptions as intermediary results, when the validity in the successor location is
not known, yet.
Example: Consider the RKSR = ({A,B}, A) shown in Figure 3.1, which is defined over the
set of atomic propositions AP = {p, q}. The sub-structure B is called with three different
calls from A and one recursive call inside B itself. Thus, the possible call stacks “ending”
at B without any recursion are SNoRec = {[cin, a2], [cin, a3], [cin, a4]}. In addition, any of the
call-stacks from SNoRec with an arbitrary number of recursive calls b2 appended to it is a
call stack of R, like [cin, a3, b2, b2]. Therefore, the set of call stacks S (R) of R is infinite.

30

3.3. Preliminary Considerations

a1

p

a8

b1

p

b3

p

A

a3

B()

a6

p

a2

B()

a4

B()

a5

p

a7

p,q

b2

B()

B

Figure 3.1.: An RKS for exemplifying call contexts

However, the number of different call contexts of stacks in S (R) with respect to a given
formula ϕ is finite.

For example, in case of ϕ = EGp, the formula is certainly satisfied in the locations a5
and a7, because they are labeled with p and have a self-loop. Therefore, the callstacks
[cin, a2], [cin, a4] certainly yield the call context in which p and EGp are both tagged t:

〈t〉EG

〈t〉p

In contrast EGp does not hold in the successor location a6 of call a3, because it has no
self loop and its only successor a8 is not labeled with p. However, a6 is labeled with p,
so this subformula receives a t label. Therefore, the call context of callstack [cin, a3] is the
following:

〈f〉EG

〈t〉p

Any call stack having a recursive call ofB would have a call context in which p is labeled
t, since the successor location b3 of the recursive call b2 is labeled with p. The validity of
EGp would be based on which of the calls in A was chosen at the beginning of the stack.
For example, the call stack [cin, a3, b2, b2] would have a context in which EGp is tagged t,
while the stack [cin, a2, b2, b2, b2, b2] would have an f -tagged context with respect to EGp.
The recursive stacks are equal to the non-recursive ones and only the two aforementioned
contexts exist for ϕ = EGp.

Finally there is the call stack [cin] which targetsA. No labels are assigned to the successor
location of this call stack, which is the virtual termination location lterm. Therefore p and
thus EGp are not satisfied here, yielding the following call context:

31

Chapter 3. Model Checking Recursive Kripke Structures with CTL

〈f〉EG

〈f〉p

The example shows that the number of different call contexts with respect to a formula is
usually much smaller than the amount of call stacks in which a sub-structure is called. The
number is even bounded by the depth and arity of the formula, since a context can only
vary in each context assumption being either t or f2. For example, there are only 24 = 16
different call contexts for the formula E(EGp)Uq, since these contexts contain four context
assumptions which can be either true or false. This especially implies that the number of
call contexts can never be infinite, as opposed to the number of call stacks which usually is.
Therefore, the effort for checking a sub-structure with respect to all the call contexts is less
than the (possibly infinite) effort of checking it for all call stacks. Therefore, the concept
of using call contexts for checking sub-structures locally while achieving a globally correct
result is the key of the algorithm. To show that this approach is valid, it has to be shown
that two call stacks are equivalent if their call contexts match:

Lemma 3.3.3 (Call stacks context equivalence). Let R be an RKS, ϕ be a CTL formula and let
σ⊕c and σ′⊕c′ be two non-empty, reachable call stacks ofRwhich both call the same sub-structure
S = S←c = S←c′ and have the same call context θϕ = θϕ(σ ⊕ c) = θϕ(σ′ ⊕ c′) with respect to ϕ.

In this case, the two call stacks are equivalent with respect to the validity of ϕ for all location
l ∈ L(S):

∀σ ⊕ c, σ′ ⊕ c′ ∈ S (R) . θϕ(σ ⊕ c) = θϕ(σ′ ⊕ c′) ∧ S←c = S←c′ ⇒
(l ∈ L(S←c) . (R, (σ ⊕ c, l) |= ϕ)⇔ (R, (σ′ ⊕ c′, l) |= ϕ))

The lemma justifies that it is correct to check a sub-structure only under all call contexts
of call stacks which call it instead of checking it under all possible call stacks. As shown in
the lemma, the equivalence requires that the call context of the stacks and the sub-structure
S←σ called by the stacks must be equal. Using this equivalence, an equivalence relation
can be defined and call stacks can be partitioned into equivalence classes. A feasible repre-
sentation of an equivalence class of call stacks σ is a pair (S, θ) of the call context θ = θ(σ)
and the call target S = S←σ of σ. This pair is the main structure which is checked at once
by the algorithm.

Definition 3.3.4 (Call stack equivalence). Let ϕ be a CTL formula and R an RKS. Two call
stacks σ and σ′ ofR are equivalent with respect to ϕ, written as σ ∼ϕ σ′, if

σ ∼ϕ σ′ ⇔ θϕ(σ) = θϕ(σ′) ∧ S←σ = S←σ′

Using this equivalence, the equivalence class of a call stack σ with respect to ϕ is defined as:

[σ]ϕ =
{
σ′ ∈ S (R) | σ ∼ϕ σ′

}
A pair (S, θ) of a sub-structure S and a call context θ is called context pair. The context pair of
a call-stack σ with respect to a formula ϕ is defined as (S←σ, θϕ(σ)). This pair uniquely identifies
the equivalence class [σ]ϕ of σ, that is:

∀σ′ ∈ S (R) . (S←σ, θϕ(σ)) = (S←σ′ , θϕ(σ′))⇔ σ′ ∈ [σ]ϕ

2By definition, also m is a possible context assumption. However, this value only represents missing infor-
mation. When all information is available, no contexts with m assumptions exist.

32

3.3. Preliminary Considerations

The algorithm will not use any call stacks directly. Instead, it will only infer reachable
context pairs which are to be labeled. Since a context pair represents the equivalence class
of a call stack with respect to a formula ϕ and, due to Lemma 3.3.3, all call stacks in that
class are equivalent with respect to the validity of ϕ in the target sub-structure, it is rea-
sonable to use the context pair as surrogate for equivalent call stacks.
Example: Consider again the RKS R = ({A,B}, A) shown in Figure 3.1 on page 31 with
the formula ϕ = EGp. As shown in the previous example, the three call contexts for that
formula are the following:

θ1 =
〈f〉EG

〈t〉p
θ2 =

〈t〉EG

〈t〉p
θ3 =

〈f〉EG

〈f〉p

However, the call stacks must also target the same sub-structure to be equivalent. There-
fore, it must be distinguished between stacks that target A and those that target B. In this
case, there is no call stack with the same context which targets different sub-structures.
Therefore, only three equivalence classes with respect to formula ϕ = EGp exist:

• Call stacks with context pair (B, θ1). These are the stacks which include the call a3,
because EGp is f at that call only:î

[cin, a3]
ó
ϕ

= {[cin, a3], [cin, a3, b2], [cin, a3, b2, b2], . . .}

• Call stacks with context pair (B, θ2). These are the stacks which originate from calls
in A except a3, because EGp must be t at the successor location of these calls:î

[cin, a2]
ó
ϕ

=

®
[cin, a2], [cin, a2, b2], [cin, a2, b2, b2], . . . ,
[cin, a4], [cin, a4, b2], [cin, a4, b2, b2], . . .

´
• Call stacks ending at A. Since no call explicitly calls A, the only call stack which

targets A is the initial one [cin]. This call stack has the context θ3, because all sub-
formulae are f at the virtual termination location.î

[cin]
ó
ϕ

= {[cin]}

Thus, in the case of ϕ = EGp, there would only be the three context pairs (B, θ1), (B, θ2),
(A, θ3) to be model checked.

When checking nested formulae, the amount of equivalence classes usually increases
(bounded by the formula depth and arity). For example, consider the nested formula
ϕ = E(EGp)Uq. In this case, the formula itself and the proposition q are satisfied in the
successor of call a4 but not in any other call in A. Therefore, the following call contexts for
the three calls in A would exist:

θ1 =

〈f〉EU

〈t〉EG

〈t〉p

〈f〉q θ2 =

〈f〉EU

〈f〉EG

〈t〉p

〈f〉q θ3 =

〈t〉EU

〈t〉EG

〈t〉p

〈t〉q

33

Chapter 3. Model Checking Recursive Kripke Structures with CTL

The context θ1 is for the call stack [cin, a2], since EGp holds in a5 but neither q nor E(EGp)Uq.
The second context θ2 is for [cin, a3], since no subformula except p holds in a6. Finally, the
call stack [cin, a4] would yield call context θ3, because all subformulae are satisfied in a7.

The initial call stack [cin] yields again a call context in which no proposition or subfor-
mula is valid:

θ4 =

〈f〉EU

〈f〉EG

〈f〉p

〈f〉q

Finally, there are call stacks which include recursive calls from b2. In the case of ϕ = EGp,
these call stacks were in the same equivalence class as the ones without recursive calls. This
is still true for call stacks which include the call a2 or a3. However, call stacks including
a4 are different. In the context θ3 of the non-recursive stack [cin, a4], all subformulae hold.
In all recursive call stacks originating from this one, like [cin, a4, b2], the proposition q is no
longer valid, since b3, the successor location of b2, is not labeled q. All other subformulae
are still valid, yielding the following call context:

θ5 =

〈t〉EU

〈t〉EG

〈t〉p

〈f〉q

Thus, there are 5 equivalence classes with respect to ϕ = E(EGp)Uq, which are identified
by the pairs (A, θ4), (B, θ1), (B, θ2), (B, θ3), (B, θ5). This is still a lot less than the possible
upper bound which would be 2× 24 = 32 (2 sub-structures and 24 possible contexts, since
each of the 4 context assumptions can be either t or f).

Proof of Lemma 3.3.3. The proof is conducted by structural induction over the formula ϕ.
For each structural case, it must be shown that the validity of the formula only depends
on the call context and not on other assumptions made about the call stack. Because the
call stacks have the same call context, the same formulae hold in the respective successor
locations lsucc(c) and lsucc(c′) of their topmost calls.

The base cases p ∈ AP and > trivially do not depend on the call stack at all. The opera-
tors ¬ and ∨ do not “look further down paths in the RKS”. Therefore, the lemma trivially
holds for them, given that the lemma holds for subformulae (which is assumed due to the
induction hypothesis). The only formulae which can really introduce an influence of the
call stack at all are the path quantors EG, EU, and EX:

Case ϕ ≡ EXψ: In this case, only the validity of ϕ in (σ, lout) introduces a dependency on
the context; other locations only depend on the validity of ψ in the successor location
for which the lemma is true (induction hypothesis). For the exit location, the validity
depends on the validity of ψ in lsucc which is known from θψ and equal for both call
stacks.

Case ϕ ≡ EGψ: For this operator, two cases must be considered:

34

3.3. Preliminary Considerations

1. A path exists which satisfies ψ in each state and never reaches the exit location
lout and thus also not lsucc. Such path trivially does not introduce a context
dependency.

2. No such path exists. In this case, EGψ holds only if there exists a path which
goes through lsucc and satisfies ψ in each location. The following tautology is
used to show that, given that the validity of EGψ in lsucc is known, the validity
of EGψ in any location can be deduced without “looking into the call stack” and
only using information from the call context:

ϕ ≡ EGψ ⇔ EψU(EGψ) ≡ EψUϕ

The formula EGψ holds exactly if there is a path where ψ is satisfied until EGψ
itself is known to be satisfied. It is already known from the call context θϕ
whether EGψ is satisfied in lsucc for both lsucc(c) and lsucc(c′). Thus, the formula
holds if there exists a path where ψ holds until lsucc is reached and ψ holds in
lsucc (EψUϕ). States after lsucc do not have to be considered.

Case ϕ ≡ EψUχ: For this operator, three cases must be considerd.

1. Equal to ϕ ≡ EGψ, case 1.

2. Similar to ϕ ≡ EGψ, case 2. In this case the tautology

ϕ ≡ EψUχ⇔ EψU(EψUχ) ≡ EψUϕ

is used, which is equivalent to the one for EGψ.

3. A path exists which goes through lout but already satisfies ψUχ before it reaches
the location. This path also does not introduce a dependency to the call stack.

The lemma is the basis for the main idea of the algorithm: To model check a formula ϕ,
it is sufficient to check all reachable context pairs (S, θ) instead of checking all call stacks.
For a formula ϕ, the goal of the labeling algorithm is to label all locations l ∈ L(S) in all
reachable context pairs (S, θϕ) with either t or f depending on whether ϕ holds in l when
S is called under a call stack having θϕ as call context.

Since call stacks with the same call context yield an equal labeling of locations in the
called sub-structure, they especially also yield an equal labeling for the successor locations
of calls in that sub-structure. Therefore, it is handy to define the context which a call has
when its sub-structure is called under another call context:

Definition 3.3.5 (Call context of call). Let ϕ be a CTL formula, and S a sub-structure. Let θϕ be
a call context for S with respect to ϕ. Let c ∈ C(S) be a call in S. Let σ be an arbitrary call stack
which targets S (i.e., S←σ = S) and has call context θϕ (i.e., θϕ(σ) = θϕ) The call context of c
with respect to ϕ under context θϕ, written as θ(c, θϕ), is defined as follows:

θ(c, θϕ) = θϕ(σ ⊕ c)

The upper definition shows that a context of a call c can be inferred given that a context
under which the sub-structure in which c resides is known. Although it theoretically al-
lows to infer new contexts from existing ones, it is non operational since it requires to find
a call stack σ with a specific context.

35

Chapter 3. Model Checking Recursive Kripke Structures with CTL

3.3.2. Knowledge Base

The algorithm decides formulae incrementally: Whenever it is able to decide whether a
formula ϕ holds in a location l ∈ L(S) under a context pair (S, θϕ), it stores this information
in a data structure — the so-called knowledge base κ. It uses values from this knowledge
base to deduce further labels until it is able to label all locations l in all reachable context
pairs (S, θϕ) either t or f with respect to ϕ. The knowledge base is a mapping from a
context θϕ and a location l to a ternary logic value.

Definition 3.3.6 (Knowledge base). LetR be an RKS. A knowledge base κ : L(R)×Θ→ T
forR is a function which satisfies

κ(l, 〈m〉τ) = κ(l, 〈f〉τ) ./ κ(l, 〈t〉τ) (3.2)

for all l ∈ L(R) and all τ . The class of all knowledge bases is depicted by K.

A lookup in the knowledge base κ(l, θϕ) determines whether formula ϕ associated to
the call context θϕ holds in location l, when its sub-structure S(l) is called in the context θϕ.
The knowledge base returns a ternary logic value. A value of m states that it is not known
yet, whether the formula holds in the given context and location.

Equation 3.2 states that a value in an m context can be inferred by looking up the values
in the t and f contexts and combining them with the ./ operator. This is used by the
algorithm, since it only checks in t and f contexts. The values in m contexts can then be
inferred.

In the context of the algorithm, a location l in sub-structure S(l) which is called in context
θϕ is said to be labeled with a formula ϕ, if the knowledge base indicates that the formula
holds at that point (κ(l, θϕ) = t).

It is important to define when a knowledge base is “complete” for a specific formula and
what the correctness of a value in a knowledge base means:

Definition 3.3.7 (Fully and Correctly Labeled Knowledge Base). Let ϕ be a CTL formula and
R an RKS. A knowledge base κ of R is said to be fully labeled with respect to ϕ, if all reachable
configurations are either labeled t or f :

∀σ ≡ σ′ ⊕ c ∈ S (R) , l ∈ L(S←c) .

κ(l, θϕ(σ)) ∈ {t, f}
(3.3)

κ is said to be correctly labeled with respect to ϕ, if all values in it comply to the CTL semantics:

∀σ ≡ σ′ ⊕ c ∈ S (R) , l ∈ L(S←c) .

κ(l, θϕ(σ)) = t⇒ R, (σ, l) |= ϕ

∧ κ(l, θϕ(σ)) = f ⇒ R, (σ, l) 6|= ϕ

(3.4)

A knowledge base is said to be fully and correctly labeled with respect to ϕ, if it is fully labeled
and correctly labeled with respect to ϕ. The following formula must hold in this case:

36

3.3. Preliminary Considerations

∀σ ≡ σ′ ⊕ c ∈ S (R) , l ∈ L(S←c) .

κ(l, θϕ(σ)) = t⇔ R, (σ, l) |= ϕ

∧ κ(l, θϕ(σ)) = f ⇔ R, (σ, l) 6|= ϕ

(3.5)

A knowledge base κ is said to be fully labeled with respect to a formula ϕ, if all locations
in all reachable call contexts are either labeled t or f , which means that there are no more
undecided m values. A label is correct if it complies to the CTL semantics, that is, a label of
t for a configuration (l, θϕ) must imply that ϕ holds and f must imply that ϕ does not hold.
A knowledge base is correctly labeled if all labels in it are correct. A fully and correctly labeled
knowledge base in which each label is set correctly and all labels are actually decided to t
or f is the goal of the labeling algorithm.

3.3.3. Obtaining Certain Call Contexts

Definition 3.3.2 on page 30 has shown how the call context of a specific call stack is de-
fined. Although this definition is very important for the understanding of the call context
semantics, it is not applicable for the labeling algorithm itself. The first problem with the
definition is that it defines the call context over the validity of the formula to be checked
(valid(ϕ, σ)). This semantic information is not known to the algorithm. The second prob-
lem of the definition is that it infers a call context for a call stack. As mentioned above, the
algorithm explicitly avoids the usage of any call stack and instead uses only call contexts.
Therefore, a call context of a call stack is not applicable for the algorithm. However, the
algorithm does need to infer call contexts, because it must check the sub-structures under
these contexts. Therefore, some functions are necessary which deduce call contexts from
the limited information the algorithm has.

The algorithm needs two fundamental operations to gather reachable contexts: It must
be possible to infer the initial call context under which the initial sub-structure is called
(Informally: the call context for the entry point of the program). Next, given a call c in a
sub-structure S and a call context under which S is called, it must be possible to infer the
call context for c in this situation.

Given an RKS R, the context assumption of the initial call stack [cin] depicts which for-
mulae are valid in the virtual termination location lterm which is reached after the initial
sub-structure has “returned”. By definition, no atomic propositions hold in that location
(µ(lterm) = ∅) and the location is a trap location containing only a self-loop as transition.
Using these characteristics of lterm, the validity of each CTL formula can be inferred. This
is done by the initial call assumption function ica : CTL→ T, which is defined recursively
over the structure of ϕ:

ica(>) = t
ica(p) = f
ica(¬ψ) = ¬ica(ψ)
ica(ψ ∨ χ) = ica(ψ) ∨ ica(χ)
ica(EGψ) = ica(ψ)
ica(EXψ) = ica(ψ)
ica(EψUχ) = ica(χ)

37

Chapter 3. Model Checking Recursive Kripke Structures with CTL

The initial call context icc : CTL → Θ of a CTL a formula ϕ represents the call context
of the initial call stack [cin]. Since this context should represent the validity of ϕ and its
subformulae in the successor location of cin (i.e., lterm), the ica function is used to deduce
exactly these validity assertions. The icc function is defined recursively over the structure
of ϕ:

icc(>) = 〈ica(ϕ)〉>
icc(p) = 〈ica(ϕ)〉p
icc(¬ψ) = 〈ica(ϕ)〉(¬icc(ψ))
icc(ψ ∨ χ) = 〈ica(ϕ)〉(icc(ψ) ∨ icc(χ))
icc(EGψ) = 〈ica(ϕ)〉EG icc(ψ)
icc(EXψ) = 〈ica(ϕ)〉EX icc(ψ)
icc(EψUχ) = 〈ica(ϕ)〉E icc(ψ)U icc(χ)

The function descends recursively into the structure of the formula and annotates each
subformula with its initial context assumption ica.

As mentioned, the second operation which must be possible is to deduce the context
of a call c in a sub-structure S which is called under another context θ′. This operation,
written as θ(c, θ′), was depicted in Definition 3.3.5 on page 35. However, as stated there, the
definition is non-operational since it needs to find a call stack having a specific call context
and it uses the valid predicate, which requires perfect semantic validity information. This
information is not known during the execution of the algorithm, since it is the goal of the
algorithm to compute this very information. Therefore, the algorithm uses an operational
pendant which looks up validity information from the knowledge base κ and inserts m
assumptions when the validity is not known, yet. This pendant is the call context function
cc. The cc : K × C(R) × Θ → Θ function takes a call c and a context θ under which
the sub-structure S(c) is called. The function returns the appropriate call context for call
c. A call context of a specific call c should reflect which formulae hold in the successor
location lsucc(c) of c under the given context θ. This information is found in the knowledge
base κ. For all subformulae of the input context θ, the function looks up the validity of
that subformula in the knowledge base κ and tags the resulting context accordingly. The
function is defined recursively over the call context θ under which S was called:

cc(κ, c, θ) = λ(θ) =
λ(〈t〉>) = 〈t〉>
λ(〈η〉p) = 〈succVal〉p
λ(〈η〉¬θψ) = 〈succVal〉¬λ(θψ)
λ(〈η〉(θψ ∨ θχ)) = 〈succVal〉(λ(θψ) ∨ λ(θχ))
λ(〈η〉EGθψ) = 〈succVal〉EGλ(θψ)
λ(〈η〉EXθψ) = 〈succVal〉EXλ(θψ)
λ(〈η〉EθψUθχ) = 〈succVal〉Eλ(θψ)Uλ(θχ)

with succVal = κ(lsucc(c), θ)

The validity of the subformula in the successor location is denoted with succVal. It is
looked up from the knowledge base κ and is inserted as context assumption in the re-
sulting call context. To insert context assumptions for subformulae, the function descends
recursively into the structure of the context. For notational conciseness, a curried version

38

3.3. Preliminary Considerations

λ(θ) of the cc function is used for the recursive calls. Since the parameters κ and c stay the
same in each recursive call, they are curried in λ.

Note that cc only produces an accurate call context if κ is already sufficiently labeled
with respect to the associated formula of the context θ and all its subformulae. Otherwise,
the context may be “inaccurate”, that is, it may contain m assumptions. This inaccuracy is
properly handled by the algorithm.

a1

p

a2

B()

a3

p

a1

p

a2

B()

a3

p

x1

A()
x2

p,EGp

A

A

X

Figure 3.2.: An example sub-structure and its context

Example: The left side of Figure 3.2 shows a trivial sub-structure A which calls another
sub-structure B. Assume κ to be an “oracle” knowledge base which is completely and
correctly labeled with respect to all CTL formulae. A call to

cc(κ, a2, 〈t〉EG〈t〉p)

would look up the call context of a2, if A is called in a context in which EGp and p hold.
This situation is illustrated on the right side of Figure 3.2. The imaginary sub-structure
X shows what the context 〈t〉EG〈t〉p represents: It stands for a call x1 which calls A and
has a successor location x2 in which p and EGp hold3. Given this context, the cc function
determines the formulae which hold in the successor location of a2, which is a3. In this
case, p would hold in a3, since this location has a p label. EGp would also hold, since the
path from a3 to x2 exists which satisfies Gp. Therefore, the call would yield the following
result in this example:

cc(κ, a2, 〈t〉EG〈t〉p) = 〈t〉EG〈t〉p
The input context influences the result, because the validity of the formula in the successor
location of a call often depends on the validity of the formula in the context (i.e., in the
successor location of the exit location, in this case pictured as imaginary location x2). For
example, consider the result for the input context: 〈f〉EG〈t〉p:

cc(κ, a2, 〈f〉EG〈t〉p) = 〈f〉EG〈t〉p

Now, EGp no longer holds in the context. Therefore, even though a3 and the context (x2) is
labeled p, the negative context assumption for EGp ensures that EGp does not hold in the
context. Therefore, EGp is also not satisfied in a3, because the only path from this location
goes to the context, where it is known that no path satisfying Gp exists, due to the negative
context assumption. Thus, also the resulting context has f as context assumption for EGp.

Not only the context but also the rest of the sub-structure behind a call can affect the
context of that call. For example, consider the same call for the context 〈t〉EG〈t〉q:

cc(κ, a2, 〈t〉EG〈t〉q) = 〈f〉EG〈f〉q
3The label EGp shown location x2 in the figure denotes that the validity of EGp is assumed in this location.

It is not an atomic proposition.

39

Chapter 3. Model Checking Recursive Kripke Structures with CTL

Now, the resulting context has both context assumptions set to f . Even if q and EGq hold in
the context, neither of this formulae holds in a3, because a3 has no q label. Therefore, even
though the formula holds in the context of A, it does not hold in the successor location of
call a2.

Using the functions for the initial context icc and for the context of a specific call under
another context cc, it is possible to find all reachable contexts and to determine which
context must be used to check the sub-structure called by a certain call. This is used by the
labeling algorithm which is presented in the next section.

3.4. The Labeling Algorithm

This section depicts the core algorithm for model checking recursive Kripke structures
with CTL. Given an RKS R, a formula ϕ which is to be checked and a knowledge base
κ which is fully and correctly labeled with respect to all subformulae of ϕ (excluding ϕ
itself, of course), the algorithm adds labels for ϕ to κ, yielding a fully and correctly labeled
knowledge base with respect to ϕ. This is done by the labelOneFormula function depicted
in Algorithm 3.1.

Algorithm 3.1 labelOneFormula : K× R× CTL→ K
Precondition: κ completely and correctly labeled with respect to all subformulae of ϕ.
fun labelOneFormula(κ,R, ϕ) =

Ξ← collectContexts(κ, Sin(R), icc(ϕ))
κ← computeLabels(κ,Ξ, ϕ)
return κ

As shown, the algorithm basically consists of two steps. The first step collectContexts
collects all possibly reachable context pairs which are to be checked. The second step
computeLabels then labels all locations in these contexts appropriately. The first step is
shown in Algorithm 3.2.

Algorithm 3.2 collectContexts : K× S×Θ→ ℘(S×Θ)

fun collectContexts(κ, S, θ) = λ(∅, κ, S, θ)
fun λ(Ξ, κ, S, θ ≡ 〈η〉τ) =

1: Ξ← Ξ ∪ (if τ ≡ > then {(S, 〈t〉τ)} else {(S, 〈t〉τ), (S, 〈f〉τ)})
2: for all c ∈ C(S) do
3: 〈ηc〉τc ← cc(κ, c, θ)
4: if (S←c, 〈t〉τc) /∈ Ξ then
5: λ(Ξ, κ, S←c, 〈ηc〉τc)
6: end if
7: end for
8: return Ξ

The collectContexts function collects reachable context pairs which are to be labeled. The
problem of collecting reachable context pairs in the call graph is simply accomplished by

40

3.4. The Labeling Algorithm

a1

p

a2

B()

a5

p

a3

B()

a4

p

A Context
θ1 θ2 θ3

〈f〉EG

〈f〉p

〈f〉EG

〈t〉p

〈t〉EG

〈t〉p
State call context / labels
a1 p,EGp p,EGp p,EGp

a2
〈f〉EG

〈t〉p

〈f〉EG

〈t〉p

〈t〉EG

〈t〉p

a3
〈t〉EG

〈t〉p

〈t〉EG

〈t〉p

〈t〉EG

〈t〉p
a4 p,EGp p,EGp p,EGp
a5 p p p,EGp

b1

p

b3

p

b2

A()

B
Context

θ2 θ3
〈f〉EG

〈t〉p

〈t〉EG

〈t〉p
State call context / labels
b1 p,EGp p,EGp

b2
〈f〉EG

〈t〉p

〈t〉EG

〈t〉p
b3 p p,EGp

Figure 3.3.: The RKS ({A,B}, A) and its associated contexts

a graph traversal which gathers traversed context pairs in the set Ξ. From the call context
θ in which S is called, the call contexts for calls in S can be deduced using the cc function
(line 3). These call contexts, together with the target sub-structure of the call yield the new
context pairs to be traversed, but only if they are not visited yet (line 5 and 6). The extra
function λ is used to carry the accumulator Ξ during the context collection.

Because the knowledge base does not yet contain information for the topmost formula of
the context, the cc function cannot infer the correct context assumption for this formula, in-
stead, it always inserts m. Therefore, both context assumptions t and f have to be checked
for the topmost subformula (line 1). An exception to this rule is the formula >, which may
only have t as context assumption.

The goal of line 5 is to skip the visiting of a call if its resulting context pair is already
visited. Since the currently visited context is always inserted with t (and f if the formula
is not >) as topmost assumption, it is sufficient to check against 〈t〉τc instead of 〈ηc〉τc to
determine whether a call must be visited.
Example: Consider the RKS ({A,B}, A) shown on the left side of Figure 3.3 and the formula

41

Chapter 3. Model Checking Recursive Kripke Structures with CTL

ϕ = EGp. On the right side of the figure, tables depicting the call context of calls and
labels of locations with respect to ϕ are displayed. The context in the first row of the tables
depicts the context under which the sub-structure is called. The further rows depict the
truth values for the subformulae of EGp, that is EGp itself and p in the respective location.
For calls, the rows instead depict the call context with respect to EGp.

For example, the first column for location a5 depicts which of the subformulae of EGp
are true in this location under the assumption that A is called in the context 〈f〉EG〈f〉p. In
this case, the context states that EGp is not valid in the successor location of a5. Therefore,
it also cannot be valid in a5. Because of this, only p is displayed for a5. In contrast, EGp
and p are valid in location a4, since this location has a self-loop forming the infinite path
where p holds. Because of that, the table shows p,EGp for this location to denote that both
formulae hold.

As example for a call, consider the first column for a2 which depicts the call context of
this call when sub-structure A is called under context 〈f〉EG〈f〉p. As a reminder, the call
context is the formula ϕ annotated with the truth values in the successor location of the
call. For call a2, the successor location is a5. As displayed in the row for this location, EGp
does not hold there, but p holds. Therefore, the call context for a2 has EGp annotated with
f and p with t.

The table columns display all reachable contexts for the sub-structures with respect to
formula ϕ = EGp. The RKS “starts” in sub-structure A with the initial context 〈f〉EG〈f〉p
(first column for A). Here, the call a2 calls B with 〈f〉EG〈t〉p (first column for B) and the
call a3 calls B with 〈t〉EG〈t〉p (second column B). In B, the call b2 calls A with context
〈f〉EG〈t〉p (second column A) and 〈t〉EG〈t〉p (third column A), depending on in which
of the two reachable contexts B was called. No other contexts are reachable. Thus, the
pairs (A, θ1), (A, θ2), (A, θ3), (B, θ2), (B, θ3) depict all reachable equivalence classes for this
formula.

For notational simplicity reasons, EGp contexts will be depicted by their two context
assumptions in this example, ordered “top-down”. For example, tf is used for the con-
text 〈t〉EG〈f〉p. Thus, the reachable context pairs can be written as (A,ff), (A, ft), (A, tt),
(B, ft), (B, tt).

Now consider a knowledge base κ which is completely and correctly labeled with re-
spect to EGp. Thus, all labels displayed in the tables are also stored in κ. With this knowl-
edge base, the collectContexts algorithm is called for the formula ¬EGp. It is easy to deduce
that the reachable contexts of ¬EGp are equal to the ones for EGpwith the topmost context
assumption being the opposite of the EGp context assumption (because, if EGp holds, then
¬EGp does not and vice versa). Again, a top-down notation for the context assumptions
is used. For example, ff would be transformed to tff as follows:

ff =
〈f〉EG

〈f〉p
=⇒ tff =

〈t〉¬

〈f〉EG

〈f〉p

Thus, the reachable context pairs for ¬EGp are exactly the pairs from EGp with “negated”
contexts: (A, tff), (A, tft), (A, ftt), (B, tft), (B, ftt). When executing the collectContexts al-
gorithm for ϕ = ¬EGp , these pairs should be collected into the set Ξ to yield a correct

42

3.4. The Labeling Algorithm

result. Of course, the reachable context pairs could be directly inferred from the reachable
context pairs of ψ in the special case of ϕ = ¬ψ, as done above. This is not done by the
algorithm for simplicity reasons. Instead, it performs a context exploration regardless of
the formula to be checked.

The algorithm uses the cc function do deduce call contexts from the entries in the knowl-
edge base. In case of ϕ = ¬EGp, the knowledge base is completely and correctly labeled
with respect to EGp. However, it is not labeled at all with respect to ¬EGp, yet. This
implies that calls of cc will always yield the correct contexts, as displayed in the tables of
Figure 3.3, with respect to EGp. Since the assumption for ¬EGp is not yet present in the
knowledge base yet, the cc function will always insert m as context assumption for this
formula.

To exemplify how the context collection works, the collectContexts function is executed
step by step for ¬EGp. The example shows that the algorithm indeed collects all reachable
context pairs:

1. The initial call to collectContexts is executed by function labelOneFormula with the
initial sub-structure A and the initial context icc(¬EGp), which is tff . Because the
topmost context assumption is often m in this step, the algorithm always inserts
both contexts with t and f as topmost context assumption into Ξ. Thus, in the first
step, the pairs (A, tff) and (A,fff) are inserted into Ξ4:

S = A

θ = tff

Ξ = {(A, tff), (A,fff)}

2. The call a2 is explored recursively. For this call, the call context cc(κ, a2, tff) is mft.
The bottom part ft can be looked up from the table in Figure 3.3 (row a2, column
θ1). The upper m is the result of the missing information about ¬EGp in κ. In the
recursive call, the context pairs (B, tft), (B,fft) are added:

S = B

θ = mft

Ξ = {(A, tff), (A,fff), (B, tft), (B,fft)}

3. The call b2 is explored, which has the context mft. The call targets A and yields the
new pairs (A, tft), (A,fft):

S = A

θ = mft

Ξ =
{(A, tff), (A,fff), (A, tft), (A,fft),
(B, tft), (B,fft)}

4Of course, the context fff is inconsistent, since an f assumption for EGp would imply a t assumption for
¬EGp yielding tff . As already mentioned, inconsistent contexts pose no problem to the algorithm.

43

Chapter 3. Model Checking Recursive Kripke Structures with CTL

4. Under the current context mft, the call a2 has the context mft. The rewriting of the
topmost assumption to true yields tft as context. Since the pair (B, tft) is already in
Ξ, a2 is not visited again.

Next, the call a3 is checked. This one yields the not yet visited context mtt. Thus, a3
is visited recursively and (B, ttt), (B, ftt) are added to Ξ:

S = B

θ = mtt

Ξ =
{(A, tff), (A,fff), (A, tft), (A,fft),
(B, ttt), (B, ftt), (B, tft), (B,fft)}

5. The call b2 has the context mtt under the current context mtt. Since (A, ttt) is not
in Ξ yet, b2 is visited and (A, ttt), (A, ftt) are added to Ξ:

S = A

θ = mtt

Ξ =
{(A, tff), (A,fff), (A, tft), (A,fft),
(A, ttt), (A, ftt),
(B, ttt), (B, ftt), (B, tft), (B,fft)}

6. Both calls, a2 and a3, yield the context mtt under context mtt. Since the context pair
(B, ttt) is already visited, the function returns to the previous step. Since no more
unvisited calls are in B, the function returns again to step 3. Here, the second call a3
has to be checked. Under the context mft, the call context of a3 is mtt. This context
is already visited, so the call is skipped and step 3 is finshed returning to step 2. Step
2 has no unvisited calls left and returns to step 1. Step 1 checks call a3 under context
tff , which yields mtt as call context for a3. This context is already visited, so the call
is skipped and the function returns.

The execution trace of the context collection, which can also be used to infer the resulting
set Ξ, can be described concisely by the sequence of visited context pairs. In this example,
the sequence would be:

(A, tff)→ (B,mft)→ (A,mft)→ (B,mtt)→ (A,mtt)

The resulting set Ξ can be obtained from the sequence by adding two versions of each
context pair in the sequence to Ξ: One with the topmost context assumption replaced by t
and one with the assumption replaced by f .

The set of reachable contexts for ¬EGp is {(A, tff), (A, tft), (A, ftt), (B, tft), (B, ftt)}.
The set Ξ includes these contexts. However, it has twice as many context because each
context was collected with t and f as topmost context assumption. The amount of contexts
collected by the function is, in the worst case (which was shown here), twice as big as the
number of reachable contexts.

It is very important for the correctness of the algorithm that collectContexts adds (at least)
all reachable context pairs to the set Ξ. Therefore, this property is to be proven:

44

3.4. The Labeling Algorithm

Lemma 3.4.1 (collectContexts collects all reachable contexts). Let R be an RKS and ϕ be a
CTL formula. For each non-empty call stack σ = σ′ ⊕ c ∈ S (R), the corresponding context pair
(S←c, θϕ(σ′)) with respect to ϕ is in Ξ as returned by collectContexts:

∀σ = σ′ ⊕ c ∈ S (R) . (S←c, θϕ(σ′)) ∈ Ξ

Proof. By induction over the size of the call stack σ. The base case is the call stack [cin] with
which the initial sub-structure is called. For this stack, the pair (Sin, ic(ϕ)) must be in Ξ.
This pair contains exactly the parameters with which collectContexts is initially called by
labelOneFormula (Algorithm 3.1, line 1). Therefore, this pair is surely collected.

For the induction step, it must be shown that the corresponding pair (S←c, θϕ(σ)) for a
callstack σ ⊕ c = σ′ ⊕ c′ ⊕ c is in Ξ, assuming that the pair (S←c′ , θϕ(σ′)) for σ′ is included
in Ξ:

Let (S, θ) = (S←c, θϕ(σ)) and (S′, θ′) = (S←c′ , θϕ(σ′)). Furthermore let θ = 〈η〉τ and
θ′ = 〈η′〉τ ′. It has to be shown that (S, 〈η〉τ) is in Ξ. This is the case if λ was called
for the pair (S, 〈ηx〉τ) with an arbitrary ηx. The context assumption ηx may be arbitrary,
because the function inserts both possible contexts 〈t〉τ and 〈f〉τ into Ξ, irrespective of ηx
(Algorithm 3.2, line 1). Thus, it has to be shown that λ is called for the pair (S, 〈ηx〉τ) for
an arbitrary ηx.

Since (S′, 〈η′〉τ ′) ∈ Ξ (induction hypothesis), collectContexts was called with (S′, 〈ηy〉τ ′)
(with arbitrary ηy). When looping over the calls of S′, the call c′was picked in one iteration.
In this iteration, the cc function was called with cc(κ, c′, θ′). Let θcc = 〈ηcc〉τ cc be the context
returned by this call of cc. For all sub-contexts in τ cc, cc returns the semantically correct call
context, because of the precondition of labelOneFormula, which ensures that κ is completely
and correctly labeled for all subformulae of ϕ. This semantically correct call context is
exactly τ , so τ cc = τ . For the topmost context assumption ηcc, cc always inserts m as
context assumption, because κ has no truth value assigned for this context yet. Thus, the
context returned by cc is 〈m〉τ (Algorithm 3.2, line 3) . The sub-structure S←c′ which is
called by c′ is exactly S. Thus, line 5 now checks for the pair (S, 〈t〉τ). If the pair is not
yet included, λ is called with that pair. As depicted above, this implies that (S, 〈η〉τ) gets
inserted into Ξ, what is to be shown. If (S, 〈η〉τ) is already in Ξ, then λ was already called
earlier with (S, 〈ηx〉τ) for an arbitrary ηx. Therefore, (S, 〈η〉τ) is already inserted in this
case, as well.

An interesting aspect shown by the proof is that it is necessary to always collect both
contexts with 〈t〉 and 〈f〉 as topmost context assumption, because it is not known yet in
this phase which of these will be called by the sub-structure. This yields a small overhead,
because there might be contexts which are not reachable but are checked nevertheless. This
overhead is necessary, however.

After collectContexts has gathered all reachable context pairs, the labels for these contexts
can be computed in the next step. This is done by the computeLabels function which is
shown in Algorithm 3.3.

As shown in the algorithm, the computeLabels function does a case distinction over the
structure of the formula ϕ for which labels should be generated and assigns labels accord-
ing to the structure. The simple cases are handled in the function itself. The complex cases
ϕ ≡ EGψ and ϕ ≡ EψUχ are handled by the labelByFixpoint function. The case ϕ ≡ EXψ

45

Chapter 3. Model Checking Recursive Kripke Structures with CTL

Algorithm 3.3 computeLabels : K× ℘(S×Θ)× CTL→ K
fun computeLabels(κ,Ξ, ϕ) =

if ϕ ≡ > then
for all (S, θϕ) ∈ Ξ, l ∈ L(S) do κ(l, θϕ)← t

else if ϕ ≡ p then
for all (S, θϕ) ∈ Ξ, l ∈ L(S) do κ(l, θϕ)← p ∈ µS(l)

5: else if ϕ ≡ ¬ψ then
for all (S, θϕ ≡ 〈η〉¬θψ) ∈ Ξ, l ∈ L(S) do κ(l, θϕ)← ¬κ(l, θψ)

else if ϕ ≡ ψ ∨ χ then
for all (S, θϕ ≡ 〈η〉(θψ ∨ θχ)) ∈ Ξ, l ∈ L(S) do κ(l, θϕ)← κ(l, θψ) ∨ κ(l, θχ)

else if ϕ ≡ EXψ then
10: for all (S, θϕ ≡ 〈η〉EXθψ ≡ 〈η〉EX〈ηψ〉τψ) ∈ Ξ do

for all l ∈ L(S) \ {lout(S)} do
κ(l, θϕ)← β(κ, c, θψ)

end for
κ(lout(S), θϕ)← ηψ

15: end for
else if ϕ ≡ EGψ | EψUχ then
κ← labelByFixpoint(κ,Ξ, ϕ)

end if
return κ

uses the β : K× C(R)×Θ→ B function which is defined as follows:

β(κ, c, θϕ) =Ñ ∨
l∈(δS(c)(l)∪L(S(c)))

κ(l, θϕ)

é
∨

Ñ ∨
c∈(δS(c)(l)∪C(S(c)))

κ(lin(S←c), cc(κ, c, θϕ))

é
(3.6)

For a call c in a sub-structure S which is called under context θϕ, the β function “looks one
state ahead”: The function returns a boolean value stating whether any of the successors
satisfies ϕ (which is exactly the semantics of EXϕ). For successor locations, the value is
simply looked up in the knowledge base. For successor calls, the value is looked up in the
knowledge base at the initial location of the called sub-structure S←c under the resulting
call context cc.

For compactness, the explanation of the computeLabels function is paired with a proof of
its correctness:

Lemma 3.4.2 (computeLabels correctness). Let R be an RKS and ϕ a CTL formula. Let κ be
a knowledge base which is correctly and completely labeled with respect to all subformulae of ϕ,
according to Definition 3.3.7. Then, Algorithm 3.3 inserts only semantically correct values into κ
with respect to ϕ. Thus, the call

κ′ ← computeLabels(κ,Ξ, ϕ)

yields a knowledge base κ′ which is correctly labeled with respect to ϕ (cf. Equation 3.4 on page 36).

46

3.5. Labeling EG and EU

Equation 3.4 states that the labeling is correct for all reachable call stacks σ and all loca-
tions in the sub-structure S←σ which is called by that call stack. This means that if a t or f
label is found in the knowledge base for a location, then the configuration (σ, l) of the the
location under the given call stack satisfies or does not satisfy the formula, respectively.

Proof. The lemma is proven by showing that each t or f value inserted into κ is semanti-
cally correct, which means that it must be possible at that moment to prove that the for-
mula holds or does not hold, respectively. Here, it may be assumed that all values which
are already contained in κ are correct, because the values for subformulae of ϕwere aleady
inserted correctly as a precondition and newly inserted labels are always proven to be cor-
rect. For the case ϕ ≡ >, all locations are labeled with t which is certainly the semantically
correct labeling. For the case ϕ ≡ p, t is assigned if the label is present in the location and f
otherwise. This is also trivially correct. The cases ϕ ≡ ¬ψ and ϕ ≡ ψ ∨ χ are similar: Here,
the value of the subformula(e) are looked up in the knowledge base and the respective
logic operation is performed. This is semantically correct, because it is assumed that the
values for subformulae are certainly correctly inserted in the knowledge base.

In the case ϕ ≡ EXψ, all locations excluding exit locations lout are labeled by checking
if at least one successor satisfies ψ. This is done by the β function depicted in Equation
3.6 and already reflects the semantics of EXψ. Due to the precondition, the call context
returned by cc is certainly the correct one, since the knowledge base is completely and
correctly labeled for ψ. The labels for the exit locations lout are directly deduced from the
context assumption ηψ (line 13), because this assumption reflects whether ψ holds in the
successor state of lout. Therefore, all locations are labeled semantically correct.

Finally, the cases ϕ ≡ EGψ and ϕ ≡ EψUχ are handled by the labelByFixpoint function.
The correctness of this function is declared in Lemma 3.5.5 on page 55 and proven there.

3.5. Labeling EG and EU

The difficult cases are the path operators EG and EU. One of the most important contri-
butions of this thesis is mainly the solution for formulae using these operators, as all other
ones are rather trivial. In case of these operators, an incremental fixed point approach
is used which computes some labels locally and then tries to deduce further labels from
them. Once no more labels can be deduced from the previously computed ones, the fixed
point is found and the remaining missing labels can be added without further checks. The
labelByFixpoint function, as shown in Algorithm 3.4, tries to deduce further labels until no
more labels can be deduced this way. The remaining m values are then resolved by the
decideRemainingMaybes function.

The deduction of labels is done by performing local model checking of sub-structures.
For this purpose, a usual so-called associated Kripke structure K is built from a single sub-
structure. This non-recursive Kripke structure can then be checked by a usual CTL model
checker for Kripke structures.

To construct the associated Kripke structure, the transition relation has to be made total.
To achieve that, the exit state in the sub-structure must be given an outgoing transition.

47

Chapter 3. Model Checking Recursive Kripke Structures with CTL

Algorithm 3.4 labelByFixpoint : K× ℘(S×Θ)× CTL→ K
fun labelByFixpoint(κ,Ξ, ϕ) =

1: repeat
2: κ′ ← κ
3: for all (S, θϕ) ∈ Ξ do
4: κ← deduceLabels(κ, S, θϕ)
5: end for
6: until κ′ = κ //Fixpoint found?
7: κ← decideRemainingMaybes(κ,Ξ, ϕ)
8: return κ

In addition, the context assumption and the assumptions about the calls have to be repre-
sented in this Kripke structure. Definition 3.5.1 depicts the associated Kripke structure.

Definition 3.5.1 (Associated Kripke Structure). Let S = (L, lin, lout, C, δ, µ, ν) be a sub-
structure, κ be a knowledge base, and θ ≡ 〈η〉EGθψ | 〈η〉EθψUθχ be a call context. Let AP =
{pψq, pχq, pϕq, pϕ?q} be a set of atomic propositions.

Let α : T×AP → ℘(AP) be a function which is defined as follows:

α(t, p) =

{
{p} if t = t

∅ otherwise

Let β : T→ ℘(AP) be a function which is defined as follows:

β(t) =

{pϕq} if t = t

{pϕ?q} if t = m

∅ otherwise

The associated Kripke structure K(κ, S, θ) = (S, I, δ, µ) is a Kripke structure over the set of
atomic propositions AP with

• the set of states S = L ∪ C ∪ {ω}

• the set of initial states I = {lin}

• the transition relation δ = δ ∪ {(lout, ω), (ω, ω)}

• the labeling function µ : S → ℘(AP) which is defined as follows:

µ(l) =

{
α(κ(l, θψ), pψq) if θ ≡ 〈η〉EGθψ
α(κ(l, θψ), pψq) ∪ α(κ(l, θχ), pχq) if θ ≡ 〈η〉EθψUθχ

for all l ∈ L

µ(c) = β
Ä
κ
Ä
lin(S←c), cc(κ, c, θ)

ää
for all c ∈ C

µ(ω) = β(η)

The sub-structure is transformed to a Kripke structure with a total transition relation by
adding the state ω, which represents the successor location of the exit location lout in the

48

3.5. Labeling EG and EU

x1

p

x3

p

x2

Y()

X
x1

p

x3

p

ω

?

x2

?

x1

x3

EGp

ω

?

x2

?

Figure 3.4.: A sub-structure (left) and its associate Kripke structures with respect to ψ = p
(middle) and ψ = EGp (right)

call context. A transition from lout to ω is added to represent these semantics. In addition,
the ω state receives a self-loop.

The most interesting aspect about the associated Kripke structure is that its atomic pro-
positions are fixed and do not include the atomic propositions of the RKS. The propositions
represent the validity of the formula ϕ and its subformulae ψ and χ: The propositions pψq
and pχq, which are only assigned to locations, state that the subformula ψ and χ, respec-
tively, hold at the location. The absence of such label states that the respective formula
does not hold at the location. The labels pϕq and pϕ?q represent statements about the valid-
ity of ϕ. These labels are only used in calls and in ω. Because ϕ is the formula which is to be
resolved, it is not fully known yet, where ϕ holds. Therefore, two labels are necessary: The
label pϕq represents that ϕ is known to hold and pϕ?q represents that it is unknown whether
ϕ holds. No label at all means that it is known that ϕ does not hold in the respective call
or in ω.

The labeling is performed as follows: Locations are labeled with pψq and pχq by looking
up the validity of ψ and χ, respectively, in the knowledge base. Due to the precondition,
the knowledge base is complete and correct for these formulae. The ω state is labeled
accordingly to the context assumption η, because this value represents the assumption
about the validity of ϕ in the successor location of the exit location lout, which is exactly ω.
Calls c are labeled according to the validity of ϕ in the initial location lin(S←c) of the called
sub-structure S←c. The call context under which this structure is called by c is inferred
using the cc function.
Example: Consider the sub-structure X on the left side of Figure 3.4. In the middle and on
the right, the figure depicts two associated Kripke structures K(κ,X, θ) of X . As shown,
an ω state has been added and calls are usual states in K. In the Kripke structure in the
middle, locations are labeled with ψ = p. This structure could be used for checking X
against formulae which have p as direct sub-structure, like EGp or EpUq. On the right,
locations are labeled with ψ = EGp (it is assumed that no path satisfying Gp from location
x1 exists). This associated Kripke structure could be used for formulae having EGp as
subformula, like EGEGp. The question marks in the omega state and in the call state mark
that the labels in these states are dependent on the context and on information about the
validity of the formula to be checked in the initial state of X . These labels will change
during iterations of the fixed point algorithm, while the labels for the locations x1 and x3
will stay the same. Note that the actual labels in the associated Kripke structure are pψq

49

Chapter 3. Model Checking Recursive Kripke Structures with CTL

and pχq instead of p or EGp. The labels p and EGp were only used to symbolize that pψq in
an associated Kripke structure always stands for the validity of a certain formula.

Using the associated Kripke structure, the function deduceLabels, as shown in Algorithm
3.5, tries to infer additional labels with respect to ϕ for a specific sub-structure S under a
specific call context θϕ.

Algorithm 3.5 deduceLabels : K× S×Θ→ K
fun deduceLabels(κ, S, θϕ ≡ 〈η〉τ) =

1: ϕ← (if τ ≡ EGθψ then EGpψq else EpψqUpχq)
2: for all l ∈ L(S) do
3: if κ(l, θϕ) = m then
4: if K(κ, S, θϕ), l |= ϕ ∨ EpψqUpϕq then
5: κ(l, θϕ)← t
6: else if K(κ, S, θϕ), l |= ¬(ϕ ∨ EpψqUpϕq ∨ EpψqUpϕ?q) then
7: κ(l, θϕ)← f
8: end if
9: end if

10: end for
11: return κ

The function loops over all locations l which are not decided yet (κ(l, θϕ) = m). Lines 4
and 6 use model checking of the associated Kripke structure to check whether a location
can be marked t or f .

Example: Consider again the RKS R = ({A,B}, A) from Figure 3.3 on page 41. Figure 3.5
shows the associated Kripke structures for the sub-structures ofR on the left and the steps
of the deduce labels algorithm for ϕ = EGp on the right. The topmost table shows the
column headers which are used for all tables below: Each column depicts the results for
a sub-structure under a specific context. The first column for example depicts results for
sub-structure A under context 〈f〉EG〈∗〉p. The asterisk depicts that the results are true for
all contexts of that form regardless of the assumption about p. This is the case, because the
context assumptions for p do not affect the result5.

Per iteration of the loop within labelByFixpoint, there are two tables: The first one with
caption “K-Labeling” depicts the labels which the states of the associated Kripkes structure
have. A label of pϕq in a call state depicts that it is assumed that EGp holds in this state. The
assumptions in the ω states are directly taken from the context. For example, the context
〈t〉EG〈∗〉p always results in a pϕq label in ω while an equal context with a false assumption
for EGp results in no label. For locations, the label pψq was inserted where the location has
a p label.

The second table with caption “κ-Update” depicts the content of the knowledge base κ
after it was updated by the deduceLabels function in the iteration. For example, the value m
for state a1 in the first column of the first κ-Update table depicts that κ(a1, 〈f〉EG〈∗〉p) = m
after the first iteration of the algorithm. At the beginning, all values in κ with respect to ϕ
are m. Values which change in an iteration are highlighted in green.

5Context assumptions for atomic propositions are only needed in the case of ϕ = EXp

50

3.5. Labeling EG and EU

a1

ψ

a5

ψ

a4

ψ

ω

?

a3

?

a2

?

A

b1

ψ

b3

ψ

ω

?

b2

?

B

Sub A B

Context

〈f〉EG

〈∗〉p

〈t〉EG

〈∗〉p

〈f〉EG

〈∗〉p

〈t〉EG

〈∗〉p

K-Labeling 1
a1 pψq pψq b1 pψq pψq
a2 pϕ?q pϕ?q b2 pϕ?q pϕ?q
a3 pϕ?q pϕ?q b3 pψq pψq
a4 pψq pψq ω pϕq
a5 pψq pψq
ω pϕq

κ-Update 1
a1 m m b1 m t

a4 t t b3 f t

a5 f t

K-Labeling 2
a1 pψq pψq b1 pψq pψq
a2 pϕ?q pϕq b2 pϕ?q pϕ?q
a3 pϕq pϕq b3 pψq pψq
a4 pψq pψq ω pϕq
a5 pψq pψq
ω pϕq

κ-Update 2
a1 t t b1 m t

a4 t t b3 f t

a5 f t

K-Labeling 3
a1 pψq pψq b1 pψq pψq
a2 pϕ?q pϕq b2 pϕq pϕq
a3 pϕq pϕq b3 pψq pψq
a4 pψq pψq ω pϕq
a5 pψq pψq
ω pϕq

κ-Update 3
a1 t t b1 t t

a4 t t b3 f t

a5 f t

Figure 3.5.: Example for the steps of the fixed point algorithm

51

Chapter 3. Model Checking Recursive Kripke Structures with CTL

For this example, the algorithm needs three iterations. In the first step, the associated
Kripke structure K assumes pϕ?q for each call, because no initial location of any sub-
structure is already decided. After the first execution of deduceLabels, 7 values were de-
cided. For example, the value for a4 changed to t in both contexts, because EGp always
holds in a4 due to the p label and the self-loop in this state. The state b1 was labeled t in the
context 〈t〉EG〈∗〉p, because the formula EpψqUpϕq holds in this state. In contrast, no result
could be obtained for this state in the 〈f〉EG〈∗〉p context, because the validity depends on
the assumption about call b2 in this case: If the assumption turns out to be true, then EGp
would hold in b1, otherwise it wouldn’t.

In the second iteration, three assumptions about call a2 and a3 have been updated to
assume that ϕ holds. This is the case, because t is now inserted as value for b1 in case of
a 〈t〉EG〈∗〉p context and the successor locations of these calls have a t value, thus yielding
this very context. In case of call a2 in the first column, the value in κ for its successor
location a5 is f . For this call, the resulting context is 〈f〉EG〈∗〉p. For this context, m is still
present in b1, so no assumption can be made for the call a2 in this case, yet. Due to the
three updated assumptions, the values for a1 can be decided to be t, because the path a1, a3
now satisfies pψqUpϕq.

Because the second iteration has assigned t labels to the initial state a1 ofA, the assump-
tions about call b2 are pϕq in iteration 3. This allows to decide the remaining m value in b1
to t due to the path b1, b2 satisfying pψqUpϕq. Now, the knowledge base is completely la-
beled with respect to ϕ = EGp. Thus, the final call to decideRemainingMaybes is unnecessary
in this case.

For the correctness of the algorithm, it has to be shown that deduceLabels inserts only
correct values into κ. Because the insertion of a value depends on the validity of a CTL
formula in the associated Kripke structure, it has to be proven that the used CTL formulae
are correct. The proof also shows why exactly these formulae were chosen.

Lemma 3.5.2 (deduceLabels correctness). Let R be an RKS and ϕ ≡ EGψ | EψUχ a CTL
formula, both over atomic propositions AP . Let κ be a knowledge base for R which contains only
correct entries and is completely labeled with respect to all subformulae of ϕ excluding ϕ itself. Let
S be a sub-structure of R which is called under context θϕ with respect to ϕ. Let ϕ′ be a CTL
formula over atomic propositions AP ′ = {pψq, pχq, pϕq, pϕ?q}. The formula ϕ′ is either EGpψq if
ϕ ≡ EGψ or EpψqUpχq if ϕ ≡ EψUχ. The following formulae hold for all call stacks σ which have
the call context θϕ(σ) = θϕ:

K(κ, S, θϕ), l |= ϕ′ ∨ EpψqUpϕq⇒ K(R), (σ, l) |= ϕ (3.7)
K(κ, S, θϕ), l |= ¬(ϕ′ ∨ EpψqUpϕq ∨ EpψqUpϕ?q)⇒ K(R), (σ, l) 6|= ϕ (3.8)

Proof. Let Kass depict the associated Kripke structure K(κ, S, θϕ). To show that the results
obtained by model checking Kass comply to the semantics of RKSs which are defined over
the semantic Kripke structure K(R), a mapping from the states of Kass to the ones of K(R)
has to be found to argue which state in Kass can make assumptions about which state in
K(R). A location l ∈ L(S) in Kass is contained in K(R) as a single state. In these locations,
a label of pψq or pχq in Kass is equal to the validity of ψ or χ, respectively, in K(R) at that
location. The absence of such label signalizes that the respective formula is not valid in
that location. The call states c ∈ C(S) and the ω state require more thoughts. In Kass, these

52

3.5. Labeling EG and EU

are only simple states. In K(R), however, these are not single states but instead arbitrary
“sub-graphs” of states. The only fact which is known about these sub-graphs is whether ϕ
holds in their initial state, that is, the state which is equal to the initial location of the called
sub-structure in case of call states or equal to the successor state of lout in case of ω. A label
of pϕq represents the validity of ϕ in that initial state, no label represents that ϕ is not valid
in that state, and pϕ?q represents that nothing is known about the validity of ϕ the initial
state.

Equation 3.7: The algorithm labels a location t with respect to ϕ, if the formula ξ = ϕ′ ∨
EpψqUpϕq is satisfied in the location in Kass. For both possible formulae EGψ and
EψUχ, a label of t means that ϕ holds and thus a path which is a witness for its
validity exists. There are two cases for such path:

1. The path consists only of states which are locations in the sub-structure. In this
case, the formula ϕ′ is satisfied in Kass and so is ξ.

2. The path starts with locations of the sub-structure and then enters a call or ω. In
this case, the path is a certain witness if all locations satisfy ψ (i.e., are labeled
pψq in Kass) and the formula is known to hold in the initial location of the state
where the path “left” the sub-structure. This is exactly satisfied if EpψqUpϕq and
thus ξ is satisfied in Kass.

Because the formula ϕ holds if either of the paths exist, a location may be labeled t if
the formula ξ is satisfied in Kass.

Equation 3.8: The algorithm labels a location f with respect to ϕ, if the formula ξ = ¬(ϕ′∨
EpψqUpϕq∨EpψqUpϕ?q) is satisfied inKass. This formula is satisfied if ϕ′ does not hold,
EpψqUpϕq does not hold, and EpψqUpϕ?q does not hold. A label of f represents that ϕ
is not valid and thus no witnessing path for ϕ exists. Now assume that the algorithm
labels a location f although ϕ holds in it. Thus, a path witnessing path for ϕ exists.
Again there are the two possibilities for such path:

1. The path consists only of states which are locations in the sub-structure. In this
case, the formula ϕ′ would be satisfied in Kass. Consequently, ξ would not be
satisfied and the algorithm would not label the location f .

2. The path starts with locations of the sub-structure and then enters a call or ω. In
this case, the path may be a witness if all locations satisfy ψ (and are thus labeled
pψq in Kass) and then the formula enters a sub-graph. For the assumption about
the initial location of that sub-graph, three cases are possible:

a) It is known that ϕ does not hold in this location (no label). Then the path
cannot be a witness for ϕ.

b) It is unknown whether ϕ holds in the location (label pϕ?q). Then, this path
would also be a witness for the validity of EpψqUpϕ?q in Kass. In this case, ξ
would not hold and the algorithm would not label the location f .

c) ϕ is known to hold in the location (label pϕq). Then, this path would also be
a witness for the validity of EpψqUpϕq in Kass. Again, ξ would not hold and
the algorithm would not label the location f .

53

Chapter 3. Model Checking Recursive Kripke Structures with CTL

Because all cases of paths witnessing the validity of ϕ lead to a contradiction, no such
path can exist. Therefore, the label of f is correct.

The deduceLabels function is executed by the labelByFixpoint function repeatedly until no
more changes are made to the knowledge base. This must be done, because one execution
of deduceLabels could label the initial location of a sub-structure. This leads to updated as-
sumptions about calls calling that sub-structure and thus can yield new labels. However,
it is often the case that no further changes are made but still some locations stay unde-
cided. These locations are then labeled by the decideRemainingMaybes function depicted in
Algorithm 3.6.

Algorithm 3.6 decideRemainingMaybes : K× ℘(S×Θ)× CTL→ K
fun decideRemainingMaybes(κ,Ξ, ϕ ≡ EGψ | EψUχ) =

1: for all (S, θ) ∈ Ξ, l ∈ L(S) do
2: if κ(l, θ) = m then
3: if ϕ ≡ EψUχ then
4: κ(l, θ)← f
5: else if ϕ ≡ EGψ then
6: κ(l, θ)← t
7: end if
8: end if
9: end for

10: return κ

This function is rather trivial. In the case of ϕ ≡ EGψ, all remaining m locations are
labeled t. In the case of ϕ ≡ EψUχ, all remaining m locations are labeled f . The reason for
this decision is depicted in the following proof of correctness.

Lemma 3.5.3 (Infinite m Path). If any m entries in the knowledge base κ exist after the fixed
point has been found by Algorithm 3.4, they must be part of at least one infinite path in the semantic
Kripke structure K(R). All values in κ are m for all configurations in that path.

Proof. This lemma is proven by contradiction: Assume an m value is not part of an infi-
nite path in K(R) in which all states have the value m. Then, it is at least part of a finite
path. Because the path is finite, it ends in a sub-structure. The last m in this path would
only have successor states which are either labeled t or f (or no successor states at all).
Therefore, the updateGuarantees function would have labeled this state either t or f . Con-
sequently, no such path can exist.

Lemma 3.5.4 (decideRemainingMaybes correctness). The labeling performed by Algorithm 3.6 is
correct.

Proof. In the case of ϕ ≡ EGψ, the m values are labeled with t. As Lemma 3.5.3 states,
all m values must be part of an infinite path with m labels in each state. In this path, all
locations must be labeled with ψ. This is the case, because otherwise the locations which
are not labeled ψ would be labeled f by the algorithm, because EGψ cannot hold in them.
Since all locations in the infinite path are labeled ψ, the path represents a witness where

54

3.5. Labeling EG and EU

ψ always holds. This is equal to the semantics of EGψ, which thus holds. Therefore, all
locations can be labeled t.

In the case of ϕ ≡ EψUχ, the infinite path with m labeled locations may not contain a
location which is labeled χ. If such location would exist in the path, it would have been
decided to t, since EψUχ trivially holds in this location. Since no locations with label χ
exist in the path, it is no path where ψ holds until χ holds, which means it is no witness
for the validity of ϕ.

All locations which are not in the set of m locations but are the target of a transition
from a m labeled location must have the label f ; if one had a t label, the m location which
has a transition to it would be labeled t by the algorithm, because EpψqUpϕq would hold
in that location in the associated Kripke structure. Now assume there is a path satisfying
ψUχ and starting at a m location. As shown above, this path cannot stay infinitely in the
set of m locations. Therefore, the path must enter a non-m labeled location. As shown,
this location must be labeled f which means that ϕ cannot hold in it. Therefore, that path
cannot be a witness for the validity of ϕ.

Consequently, no path can be found which is a witness for the validity of EψUχ and
therefore the f label is correct.

The decideRemainingMaybes function is the last part of the labeling algorithm for ϕ ≡
EGψ and ϕ ≡ EψUχ. It resolves all remaining m locations and therefore yields a knowl-
edge base which is completely and correctly labeled with respect to ϕ. Note that the func-
tion is only necessary in case of (possibly mutually) recursive calls. Otherwise, the fixed
point mechanism is always able to infer all labels. However, even in the case of recursion,
it is not always necessary, as shown in the previous example which contained mutually
recursive sub-structures but did resolve all m values by fixed point iteration.
Example: Consider the RKS R = ({A}, A) over propositions AP = {p, q} depicted on the
left side of Figure 3.6. The only sub-structure A calls itself in call a2, yielding an infinite
looping recursion. The table on the right of the figure shows the execution of the fixed
point algorithm for the formulae EGp and EpUq. In the first step, the algorithm is able to
assign labels to a3. However, the algorithm already terminates after this step, because it
cannot update any assumptions about a2, since these would depend on the labels in a1.
For these formulae, the decideRemainingMaybes would be used to label a1. For ϕ = EGp,
the state would be labeled t. This is correct, since there is an infinite path satisfying p in
each state: the looping recursion path ([cin], a1), ([cin, a2], a1), ([cin, a2, a2], a1),

For the case of ϕ = EpUq, the location a1 is labeled f . This is also correct, because no path
exists which eventually reaches a3 containing the q label, because the looping recursion
never terminates.

Lemma 3.5.5 (labelByFixpoint is correct). All values added to the knowledge base during the
execution of the labelByFixpoint function are semantically correct.

Proof. During the execution of labelByFixpoint, values are added to the knowledge base by
the function deduceLabels and decideRemaingMaybes. Lemma 3.5.2 states the correctness of
the former one, Lemma 3.5.4 states the correctness of the latter one.

55

Chapter 3. Model Checking Recursive Kripke Structures with CTL

a1

p

a2

A()

a3

q

A
Context 〈f〉EG〈∗〉p 〈t〉EG〈∗〉p 〈f〉E〈∗〉pU〈∗〉q 〈t〉E〈∗〉pU〈∗〉q

K-Labeling 1
a1 pψq pψq pψq pψq
a2 pϕ?q pϕ?q pϕ?q pϕ?q
a3 pχq pχq
aω pϕq pϕq

κ-Update 1
a1 m m m m

a3 f f t t

Figure 3.6.: The fixed point algorithm yielding remaining m values

Proposition 3.5.6 (Overall correctness and completeness). Let ϕ be a CTL formula,R an RKS,
and κ a knowledge base which is correctly and completely labeled with respect to all subformulae of
ϕ (excluding ϕ itself). Then, the call

κ′ ← labelOneFormula(κ,R, ϕ)

returns a knowledge base κ′ which is correctly and completely labeled with respect to ϕ.

Proof. It has to be proven that Equation 3.5 holds for ϕ, given that it holds for all subfor-
mulae of ϕ. Here is equation 3.5 again:

∀l ∈ L(S←c) .

κ′(l, θϕ(σ)) = t⇔ R, (σ, l) |= ϕ

∧ κ′(l, θϕ(σ)) = f ⇔ R, (σ, l) 6|= ϕ

The equivalences can be split into two implications yielding the following two formulae
to be proven:

∀l ∈ L(S←c) .

κ′(l, θϕ(σ)) = t⇒ R, (σ, l) |= ϕ

∧ κ′(l, θϕ(σ)) = f ⇒ R, (σ, l) 6|= ϕ

(3.9)

and

∀l ∈ L(S←c) .

κ′(l, θϕ(σ)) = t⇐ R, (σ, l) |= ϕ

∧ κ′(l, θϕ(σ)) = f ⇐ R, (σ, l) 6|= ϕ

(3.10)

Equation 3.9 is exactly the definition of a correctly labeled knowledge base. Lemma 3.4.2
states that the algorithm achieves this.

Equation 3.10 is satisfied if all reachable configurations can be looked up correctly in the
knowledge base. Since Equation 3.9 already states that all labels are correct, the only thing

56

3.6. Model Checking Using the Labeling Algorithm

which is missing to prove Equation 3.10 is to show that all labels are actually either labeled
t or f . This is exactly the definition of a fully labeled knowledge base:

∀σ ≡ σ′ ⊕ c ∈ S (R) , l ∈ L(S←c) .

κ(l, θϕ(σ)) ∈ {t, f}
(3.11)

Lemma 3.4.1 states that collectContexts collects all reachable context pairs. As depicted by
the lemma, these pairs represent the contexts of all reachable call stacks. Thus, it suffices
to show that all locations in these contexts are labeled either t or f by the algorithm.

It is easy to show that computeLabels labels all locations in all the collected contexts: For
all cases except EG and EU the algorithm loops over all contexts and all locations in them
and labels all of these locations. For the remaining cases, the decideRemainingMaybes func-
tion labels all previously unlabeled locations in all contexts. Therefore, all locations are
labeled either t or f after the execution of computeLabels. Since the resulting knowledge
base of computeLabels is used as result for labelOneFormula, the resulting knowledge base κ′

is correctly and completely labeled with respect to ϕ.

3.6. Model Checking Using the Labeling Algorithm

To use the labeling algorithm for model checking of a formula ϕ, a knowledge base must
be built which is completely and correctly labeled with respect to ϕ. Usually, the user is
only interested in the validity of ϕ in the initial state, which means the initial location of
the initial sub-structure under the initial call context. This value can be looked up in the
labeled knowledge base.

The labeling algorithm labelOneFormula performs the labeling with respect to one for-
mula, given that all subformulae are already labeled in the input knowledge base. To use
this algorithm for model checking of ϕ, it must be called recursively for subformulae of ϕ
to yield a knowledge base which can be used as input for the checking of ϕ. This is done
by the function label depicted in Algorithm 3.7.

Algorithm 3.7 label : K× R× CTL→ K
fun label(κ,R, ϕ) =

if ϕ ≡ ¬ψ | EXψ | EGψ then //Recursive descent
κ← label(κ,R, ψ)

else if ϕ ≡ ψ ∨ χ | EψUχ then
κ← label(κ,R, ψ)
κ← label(κ,R, χ)

end if
κ← labelOneFormula(κ,R, ϕ) //Label ϕ
return κ

The function takes a knowledge base κ, an RKSR, and a formula ϕ to be checked and re-
turns a knowledge base which is completely and correctly labeled with respect to ϕ. First,
a recursive call of the function for subformulae of ϕ is performed to retrieve a knowledge
base which is labeled with respect to these subformulae. Afterwards, the labelOneFormula
function is used to label κ with respect to ϕ itself.

57

Chapter 3. Model Checking Recursive Kripke Structures with CTL

a1

q

a2

B()

a3

b1

p

b3

b2

A()

A B

(a)

c1

c2

D()

c3

q

d1

d3

p

d2

C()

C D

(b)

Figure 3.7.: Two recursive Kripke structures

The modelcheck function, as depicted by Algorithm 3.8 uses the label function to perform
local model checking of a formula. Given an RKSR ≡ (S, Sin) and a formula ϕ, modelcheck
returns whether ϕ is valid in the initial configuration ([cin], lin(Sin)) ofR.

Algorithm 3.8 modelcheck : R× CTL→ B
fun modelcheck(R ≡ (S, Sin), ϕ) =

κ← (_ 7→m) //Init κ with “no knowledge yet”
κ← label(κ,R, ϕ) //Perform labeling
return κ(lin(Sin), ic(ϕ)) //Lookup value in initial location

Theorem 3.6.1 (modelcheck correctness). Given an RKSR = (S, Sin) and a CTL formula ϕ, the
result of modelcheck(R, ϕ) complies to the CTL semantics:

modelcheck(R, ϕ)⇔ R, ([cin], lin(Sin)) |= ϕ

Proof. Proposition 3.5.6 states that labelOneFormula produces a knowledge base κ′ which is
completely and correctly labeled with respect to ϕ, given that the input knowledge base κ
is labeled completely and correctly with respect to all subformulae of ϕ. The label function
performs the recursive labeling for subformulae of ϕ before ϕ itself is labeled (bottom-up).
Therefore, label yields a correctly and completely labeled knowledge base.

The value for the initial configuration ([cin], lin(Sin)) is looked up in the knowledge base
using the initial location of the initial sub-structure under the initial context ic(ϕ) with
respect to ϕ. Since the knowledge base is completely and correctly labeled, this look-up
surely yields a correct result.

The examples presented up to this page only contain model checking of shallow formu-
lae. To show how a nested formula is checked by the algorithm, a comprehensive example
with a deeply nested formula is to be shown.
Example: Figure 3.7 shows two similar mutually recursive RKSs over the atomic propo-
sitions AP = {p, q}. While the one in Figure 3.7(a) has the initial states labeled, the one
in Figure 3.7(b) has the exit states labeled. Consider the CTL formula ϕ = EF(p ∧ EF(q ∧
EF(p ∧ EF(q ∧ EFp)))). The formula describes that there must be a path which contains
p,. . . ,q,. . . ,p,. . . ,q,. . . ,p. It is easy to see that the formula holds in both RKSs; the satisfying

58

3.6. Model Checking Using the Labeling Algorithm

path is the one that descends at least 5 times into the recursion. Although such formula
might not be used in real applications, it is useful for showing how the algorithm is able
to “look far enough” into the recursion to solve a formula. To model check the formula
with the algorithm, it first has to be transformed into an equivalent formula using only the
orthogonal operators. Because the transformation of ψ∧χ to ¬(¬ψ∨¬χ) would introduce
too many unimportant negation steps, consider that the algorithm is able to model check
∧ explicitly without transformation. This can be done (and is done indeed in the imple-
mentation) by adding a ψ ∧ χ case to Algorithm 3.3 on page 46. This case is equal to the
ψ ∨ χ case but uses ∧ instead of ∨ to combine the subformula values from the knowledge
base. The operator EFψ is transformed to E>Uψ, yielding the following representation:

ϕ = E>U(p ∧ E>U(q ∧ E>U(p ∧ E>U(q ∧ E>Up))))

The labeling starts with the innermost formulae which are > and p. The algorithm triv-
ially labels all contexts with these propositions. The first interesting case is the innermost
temporal operator E>Up. In order to compactly depict which context pairs are collected, a
short notation is used again: Since the formula> has always the context assumption t and
the context assumption for atomic propositions like p is not important when not checking
EX formulae, these assumptions are omitted. The only assumptions which are written are
the ones of the temporal EU formula. To shorten the representation even more, only the
context assumptions are shown, not the formula. For example, the context 〈f〉E〈∗〉>U〈∗〉p
is denoted by f and the context 〈t〉E〈∗〉>U(〈∗〉q ∧ 〈f〉E〈∗〉>U〈∗〉p) by tf .

At first, consider the RKS Ra = ({A,B}, A) from Figure 3.7(a). For the formula ϕ =
E>Up, the context pairs (A, f), (A, t), (B, f), (B, t) are collected. The results of the labeling
algorithm for these context pairs are shown in Table 3.1.

Table 3.1.: Validity of E>Up inRa
Context f t

a1 t(2) t(1)

a3 f(1) t(1)

b1 t(1) t(1)

b3 f(1) t(1)

The numbers behind the validity values show in which iteration of the algorithm the
result was obtained. Results in iteration x are usually based on results obtained in iteration
x − 1. In case of a t context, the formula always holds because the path to the exit state
satisfies the formula >Uϕ. In the f context, the formula holds for the initial state b1, since
it is labeled with p. Consequently, it also holds for a1 due to the path a1a2 which calls B
and ultimately reaches the p label there. The value for a1 is the only one which needs a call
assumption and therefore can only be calculated in the second iteration of the algorithm6.

The next formula to be checked is ϕ = E>U(q ∧ E>Up). The collection starts with the
context pair (A,ff) which also collects the pair (A, tf). Thus, the first collect step looks like

6Note that it might be the case that it could be labeled in the first iteration, if sub-structure B is computed
beforeA. Such order-dependent effects are left out from the example and the iteration number in the worst
case is shown.

59

Chapter 3. Model Checking Recursive Kripke Structures with CTL

this:

S = A

θ = ff

Ξ = {(A,ff), (A, tf)}

The call a2 has the call context mf under the context ff , thus the pair (A,mf) is visited:

S = B

θ = mf

Ξ = {(B,ff), (B, tf)(A,ff), (A, tf)}

Under context mf , the call b2 has the context mf , which is already visited7, so the collection
stops. Note that the number of context pairs has not increased. The result of the labeling
algorithm is shown in Table 3.2.

Table 3.2.: Validity of E>U(q ∧ E>Up) inRa
Context ff tf

a1 t(2) t(1)

a3 f(1) t(1)

b1 t(1) t(1)

b3 f(1) t(1)

The result is the same as for the formula E>Up: For the tf context, the formula holds
in each state since the path going to the exit state satisfies the formula >Uϕ. For the ff
context, the formula is satisfied in a1, because q and the subformula E>Up hold there.
Consequently, it also holds in b1 due to the call b2 calling A.

It is easy to conclude that the number of contexts, when checking the remaining formu-
lae, will not increase, and the validity of these formulae will all be equal. Consequently,
the initial location will be labeled t for all formulae and the algorithm will return that the
formula E>U(q ∧ E>Up) thus holds.

In conclusion, the algorithm is able to “look deep enough” into the recursion without
having to increase the number of contexts when checking the Ra. The case is different
when checking the RKSRb = ({C,D}, C) depicted in Figure 3.7(b). Since the p and q labels
are now behind the calls, the algorithm must infer the validity in the mutual recursion from
the call context. For the first subformula ϕ = E>Up, the context pairs which are collected
are (C, f), (C, t), (D, f), (D, t). The resulting labeling is depicted in Table 3.3.

Again, the labels in the t context are all t due to the path which leaves the exit state and
reaches the context satisfying >Uϕ. For the f context, the formula is true in d1 and d3,
since d3 is labeled with p. Finally, the formula also holds in c1, because the call to D which
reaches d1.

7More precisely, the corresponding t context tf is in Ξ, so the call is not explored.

60

3.6. Model Checking Using the Labeling Algorithm

Table 3.3.: Validity of E>Up inRb
Context f t

c1 t(2) t(1)

c3 f(1) t(1)

d1 t(1) t(1)

d3 t(1) t(1)

The next formula to be checked is ϕ = E>U(q ∧ E>Up). The context collection starts as
follows for this formula:

S = C

θ = ff

Ξ = {(C,ff), (C, tf)}

The call context for call c2 is mf in this case, so D is visited under this context:

S = D

θ = mf

Ξ = {(D,ff), (D, tf), (C,ff), (C, tf)}

This is the point where things start to get different from the previous example. In the case
of a mf context, the subformula E>Up is valid in d3, therefore, the resulting call context
for d2 is mt, which is not visited yet, leading to the following next step:

S = C

θ = mt

Ξ =
{(C, ft), (C, tt), (D,ff),
(D, tf), (C,ff), (C, tf)}

Under this context, also call c2 has a mt context, so the final step also collects the two
remaining context pairs:

S = D

θ = mt

Ξ =
{(D, ft), (D, tt), (C, ft), (C, tt),
(D,ff), (D, tf), (C,ff), (C, tf)}

In contrast to the previous example, all possible contexts where collected here. This
leads to the labeling depicted in Table 3.4.

The contexts tf and tt, which are depicted on the right, are the easiest: Since the formula
holds in the context, the path reaching the exit state surely satisfies the formula. For the
other cases, d3 is labeled f , since q does not hold there and also the formula itself does
not hold in the context. In the context ft, the state c3 satisfies q and E>Up (cf. Table 3.3).
Therefore, the formula certainly holds in c3 and c1. The call context of call d2 is ft in both

61

Chapter 3. Model Checking Recursive Kripke Structures with CTL

Table 3.4.: Validity of E>U(q ∧ E>Up) inRb
Context ff ft tf tt

c1 t(3) t(1) t(1) t(1)

c3 f(1) t(1) t(1) t(1)

d1 t(2) t(2) t(1) t(1)

d3 f(1) f(1) t(1) t(1)

contexts ff and ft (cf. Table 3.4 for the first value f and Table 3.3 for the latter value t).
Under this context, the initial state c1 of C is labeled t, therefore the formula holds in both
contexts in the predecessor location of d2 which is d1. These values can be used to solve c1
for context ff to t, since the call c2 now has a t assumption.

Table 3.4 already shows that three iterations are necessary to label all locations, because
the contexts carry transitive dependencies. Thus, in this example, it can be assumed that
the number of contexts grows with the formula depth and the number of iterations needed
grows with it. This assumption will be confirmed in the next step.

Now consider the third nested formula ϕ = E>U(p∧E>U(q∧E>Up)). Again the context
collection starts at (C,fff). Because the context collection is analogous to the former ones,
only the sequence of visited context pairs is shown here:

(C,fff) −→ (D,mff) −→ (C,mft) −→ (D,mtt) −→ (C,mtt)

The contexts can be inferred by looking up the second value from Table 3.4 and the third
from Table 3.3. The first value is always m, except for the initial context. The last pair
(C,mtt) would trigger the collection of (D,mtt) which is already collected. Since every
visited context is collected with t and f as topmost context assumption, this sequence
yields a set Ξ consisting of 10 context pairs. The sequence also shows how the formula
validity depends on the context: In the initial context (C,fff), no subformula holds and
thus also the call of D yields a context (D,mff) in which no subformula holds. Since
D contains a p, the lowermost assumption then switches to t in the following context
(C,mft). Since C contains a q, the second context assumption now also changes to t in
the context (D,mtt). Table 3.5 depicts the labeling results for the collected contexts.

Table 3.5.: Validity of E>U(p ∧ E>U(q ∧ E>Up)) inRb
Context fff fft ftt tff tft ttt

c1 t(4) t(2) t(2) t(1) t(1) t(1)

c3 f(1) f(1) f(1) t(1) t(1) t(1)

d1 t(3) - t(1) t(1) - t(1)

d3 f(1) - t(1) t(1) - t(1)

Fields which have no validity in them are ones which form a context pair that was not
collect, like, for example, the pair (D, tft). Again, the three columns on the right are triv-
ially decided to t, since the formula itself holds in the context. For the context ftt, the loca-
tions d1 and d3 can be labeled t, because both subformulae, that is p and E>U(q∧E>Up)),

62

3.7. Differences to the Basic Approach

hold in d3 in this context. The state c3 can be labeled f in all three contexts on the left,
because the formula itself does not hold in the context and q is not reachable from this
state. The state d3 can be labeled f in the context fff , because neither the formula itself
holds in the context, nor does the subformula E>U(q ∧ E>Up)) (cf. Context ff in Table
3.4). All these labels can be assigned in the first iteration. The remaining labels for c1 and
d1 depend on the assumption about the calls c2 and d2, respectively, and thus cannot be
assigned that early. In the context ftt, the call context of call c2 is ftt (cf. value of location
c3 in Tables 3.5, 3.4, and 3.3 under context ftt, tt, and t, respectively). Since d1 is labeled
t in this context, the assumption about call c2 and thus the label for c1 can be decided to
t in that context. In context fft, the call c2 has also the call context ftt allowing to label c1
with t in this context, as well. This value can be used to solve d1 in context fff in the third
iteration. In this context, the call d2 has the call context fft which leads to a t assumption
and thus a t label of d1. This label finally decides the call context of c2 under context fff ,
which is also fff , to t, thus ultimately labeling c1 in the initial configuration with t.

Again, the conclusion about the result for further EF formulae is easy: In this case, the
number of contexts will grow linearly and so will the number of iterations needed in the
labeling algorithm, because the “context chain” necessary to label the initial context gets
one step longer with each nested EF formula.

The examples show that similar RKSs can lead to quite different results in the algorithm.
They also show that the worst case of exponential growth of context pairs with respect to
formula depth is not common: In the first example, the number of context pairs did not
grow at all, while it showed linear growth in the second example.

3.7. Differences to the Basic Approach

This section elaborates how this algorithm differs from the basic algorithm and why the
modifications were performed. When directly comparing this algorithm with the publi-
cation of Fehnker et al. [44], there are many notational and nomenclature differences. For
example, boxes are named calls in this thesis. These differences are omitted here.

The most obvious modification, which was also described in the first section of this
chapter, is that this algorithm does not build a new RKS after checking a formula ϕ, but
saves validity information for ϕ in the knowledge base κ. The basic algorithm, encodes
the validity of ϕ in the labels of the resulting RKS. In addition, it also encodes the call
contexts in the call mapping of the resulting RKS and duplicates sub-structures when they
are called in different call contexts. The main reason for dropping this encoding was that
the building of an RKS does not work in the incremental refinement presented in the next
chapter: Since there is no more checking for one formula, it is impossible to build new
RKSs since different formulae must be checked on the same RKS at a time. In addition,
the approach using a knowledge base seems more natural than encoding the call context
in the call structure of the RKS: A lookup of κ(l, θϕ) can be interpreted easily as: Whenever
the sub-structure in which l resides is called with a call stack that satisfies θϕ, then the
validity of ϕ at location l is κ(l, θϕ). In contrast a label ϕ in the resulting RKS of the basic
algorithm is harder to interpret. For example, consider a sub-structure S which was split
into many sub-structures by the basic algorithm. Let one of these sub-structures be S′.

63

Chapter 3. Model Checking Recursive Kripke Structures with CTL

Now, it is not obvious which call stacks S′ represents. A call stack σ in the resulting RKS
ending at S′ can be searched and it can be argued that this call stack represents a member
of the equivalence class of call stacks represented by this sub-structure. By inferring the
labels at the successor location of the topmost call of that call-stack, the call context can
also be inferred. However, this is not as straight forward as in the case of the knowledge
base approach.

Another modification is that ϕ ≡ EXψ is no longer solved by the labelByFixpoint function,
or subcheck, how this function is called in the basic algorithm. This modification was made,
because solving EX with fixed point iteration is conceptually disputable: EX does not need
a fixed point iteration, it can always be solved in the first step. It also does not need any m-
labels, because it does not need any information about the validity of ϕ but only about the
validity of ψ, which is fully available. The decision to leave out EXψ from the fixed point
algorithm makes it more concise by allowing to focus on the important cases. The first
simplification is that no formula to solve EX in the associated Kripke structure is needed
anymore. The second one is that the label pψq in the associated Kripke structure gets a
unique semantics: It encodes the validity of ϕ. In contrast, in the basic approach, the label
pt either encodes the validity of ϕ in case of ϕ ≡ EGψ | EψUχ or of ψ in case of ϕ ≡ EXϕ,
which makes comprehending the algorithm harder.

The summaries in the basic algorithm, which are comparable to the knowledge base
in this algorithm, encode assumptions α for calls and guarantees ω for locations. In con-
trast, the knowledge base only encodes guarantee information for locations. The reason
for this is that the assumptions for calls follow directly from the guarantees of locations.
Therefore, the algorithm in this thesis always computes the assumptions on-the-fly in-
stead of pre-calculating and storing them in the knowledge base explicitly. While such a
pre-calculation is indeed good for performance (and is conducted in the implementation)
it is of no conceptual gain and makes reasoning about the algorithm harder. Therefore, it
was dropped.

Another change to the basic approach is that the definition of RKSs has been restricted
further: In the definition in this thesis, a call may have only one successor location while
the definition of Fehnker et al. allows more than one. This change was made purely for
simplicity reasons as a single successor location makes the algorithm easier to understand
and prove and does not decrease the expressiveness of the model. When implementing
the algorithm, it is easy to drop this restriction. This was done in the implementation of
XMV which allows more than one successor location.

The final difference is the definition of the RKS R = (S, Sin) as a set of sub-structures
and a designated initial structure instead of the definition R = S1, . . . , Sn as a sequence
of sub-structures. As a consequence, there is no specified ordering over the sub-structures
anymore, which does not carry any information anyway. The call mapping ν now maps
from call directly to sub-structure instead of mapping from call to sub-structure index. The
reason for this modification is that the formal definition of the operations split and merge
is very cumbersome when having to maintain indexes. Since these operations where not
defined formally in [44], this was no issue for Fehnker et al., but an issue for this thesis.

64

Chapter 4.

Incremental Refinement

This chapter proposes an incremental refinement of the algorithm from the previous chap-
ter. The aim of this incremental refinement is to leverage the fact that local model checking
is usually sufficient, that is, the model checking with respect to the initial configuration.
The algorithm from the previous chapter always performs global model checking, label-
ing all reachable configurations of the RKS. The incremental refinement carefully tries to
find the smallest set of context pairs which are necessary to label the initial configuration
correctly and performs the model checking only with these pairs instead of all reachable
pairs. The set computed by the algorithm is not completely minimal but rather an over-
estimation which is believed to be still sufficiently small to yield a noticeable performance
increase. The chapter starts with an overview over the incremental refinement, followed
by a brief comparison to the algorithm from the previous chapter. Then, the incremental
algorithm is described in detail. Finally, its correctness is proven.

4.1. Overview

The algorithm shown in the previous chapter performs labeling with respect to a formula
ϕ in two steps: First, the reachable context pairs are collected and next, these context pairs
are labeled thoroughly. For large RKSs which consist of thousands of sub-structures, the
set of all reachable contexts may be quite large and hence the labeling of all these contexts
might take long. Since the primary target of model checking is to label the initial config-
uration of the RKS correctly, it is not necessary that all locations in all reachable contexts
are actually labeled. Instead, it suffices to label only as many locations so that the label for
the initial location can be inferred. This is what the incremental refinement achieves. For
example, formulae of the form ¬ψ can always be solved locally in the initial configuration.
In contrast, the formula EGψ is not always solved that easily.

While the basic approach always collects all reachable contexts to label them, the incre-
mental refinement collects only contexts which are necessary to label the initial configu-
ration. By exploring the call context graph and stopping the exploration whenever the
validity of ϕ can be decided locally for the explored context, a set of contexts is explored
which cannot be decided locally. Once such set is found, it is checked with the labelByFix-
point algorithm presented in the previous chapter, which is only slightly adapted.

The basic algorithm is strictly separated into the steps “collect contexts” and “label these
contexts”. No such separation is possible in the incremental refinement, because it must
be tried to label the currently explored context in order to decide whether this context can
be labeled locally or more contexts have to be explored.

65

Chapter 4. Incremental Refinement

In addition, the algorithm no longer works strictly on one formula ϕ at a time. Instead,
it is possible that while checking ϕ, the algorithm must “go back” to labeling a subformula
ψ. For example, consider the formula ϕ ≡ EGp. The proposition p can always be solved
locally without looking at other contexts than the initial one. So a recursive call to the
labeling algorithm would only label the initial context with respect to p. It is, however,
possible that the formula EGp cannot be solved in the initial context only. In this case,
further contexts have to be explored and labeled. These contexts do not have a labeling for
p yet, so, the algorithm must label p for these contexts before it can label EGp for them.

The incremental labeling of a call context pair (S, θϕ) with respect to a formula ϕ is
conducted in three steps. Each of them must only be performed if the one before is not
able to yield a result:

1. It is tried to label the locations of S in context θϕ locally, using the already computed
values in the knowledge base κ. If a result is obtained (i.e., the location lin is either
labeled t or f), then the checking for this context pair is finished without checking
further ones. This is called local checking. If the initial location is still labeled m
(i.e., not yet labeled) after the local check, this can have two reasons: First, labels for
subformulae of ϕ might still be missing. Second, some call assumptions might still
be m and the labeling of the initial location might depend on these assumptions. The
algorithm checks for these two possible reasons in the remaining steps.

2. It is checked whether the knowledge base is fully labeled in the current context with
respect to the subformulae of ϕ. If it is not, then the algorithm first labels all locations
in the current context with respect to the subformulae of ϕ. For example, in the case
of ϕ ≡ EGψ, the algorithm tries to label all locations in the current context with
respect to the formula ψ. This is called vertical checking, since the algorithm “descends
vertically down” the structure of the formula. After the vertical checking has been
performed, another local check attempt can be made, since the additional labels with
respect to subformulae of ϕ might suffice to label the initial location with respect to
ϕ.

3. If the initial location is not labeled yet after the vertical checking has been performed
thoroughly, then the result must depend on the assumptions made about calls. If this
is the case, the algorithm must pick a call c ∈ C(S) from the calls of the sub-structure
of the current context and try to label the initial location of the sub-structure S←c
called by that call under the call context cc of that call. This step is called horizontal
checking and is similar to the graph exploration of the basic algorithm.

Of course, the horizontal checking can run into a loop of sub-structures which call each
other and cannot be decided locally. In such situation, the set of sub-structures which take
part in such a loop must be decided with the usual labelByFixpoint algorithm. To gather
the sub-structures which have to be checked together because they take part in such a
call-loop, the set of visited but not yet decided context pairs is kept while performing the
horizontal checking. This is equal to the set Ξ which gathered the reachable context pairs
in the basic algorithm. The checking starts with the initial sub-structure Sin in the initial
context icc.

66

4.2. Differences to the Non-Incremenal Algorithm

Note that labeling must be performed in two different ways: In the steps 1 and 3, it is
sufficient to label the initial location. This is called partly checking of a context. In step 2,
all locations must be labeled. This is called fully checking of a context. Also note that the
formulae>, p ∈ AP , ¬ψ, and ψ∨χ can always be decided locally without considering any
further contexts except for the initial one and the formula EXψ can be decided with looking
at most “one step further”. For these formulae, the incremental refinement always yields
a huge performance benefit. For the operators EG and EU, the benefit of the incremental
refinement depends on whether local paths satisfying the formulae exist.

4.2. Differences to the Non-Incremenal Algorithm

The biggest difference between the algorithms, which is also the advantage of the incre-
mental refinement and the reason why it is proposed, is that the incremental version checks
only as many context pairs as necessary while the basic approach always checks all reach-
able context pairs. This property can lead to large performance increases, especially for
formulae which can be decided locally. For example, consider the formula Φ = EGp and a
huge RKS of thousands of sub-structures. If the model checking is used for static program
analysis, where each function is mapped to a sub-structure, this is a quite realistic scenario
for larger programs. If the initial sub-structure Sin already contains a local path which is
labeled p in each location, then the formula Φ can be decided locally in Sin without check-
ing any other sub-structure. While the incremental algorithm would do that, the algorithm
presented in the previous section would check all reachable context pairs.

A conceptual difference between the algorithms is that the incremental algorithm is of-
ten forced to check different formulae for different sub-structures at a time, while the basic
approach always has one formula which is currently being checked and only checks fur-
ther formulae once this formula has been checked thoroughly. This property of the incre-
mental approach originates from its “lazy” checking of sub-structures: Consider a formula
ϕ which can be decided in the initial sub-structure Sin. Then κ is labeled correctly with re-
spect to ϕ for all locations in Sin, but not labeled yet for other sub-structures. Afterwards,
if a formula which uses ϕ as subformula, like EGϕ, requires the checking in additional
sub-structures, then ϕ has to be checked for these sub-structures. Thus, model checking
has to be performed with respect to ϕ even after the algorithm is finished with the initial
checking of ϕ.

4.3. Algorithmic Details

A main feature of the incremental refinement is to stop whenever a sub-structure is suffi-
ciently labeled. This notion is defined formally as follows:

Definition 4.3.1 (Fully Labeled Context). Let κ be a knowledge base, S a sub-structure, ϕ a
CTL formula, and θϕ a call context under which S is called with respect to ϕ. κ is said to be fully
labeled with respect to (S, θϕ) if all locations are labeled either t or f for this context pair:

∀l ∈ L(S) . κ(l, θϕ) ∈ {t, f}

67

Chapter 4. Incremental Refinement

Furthermore, κ is said to be partly labeled with respect to (S, θϕ), if the initial location is labeled:

κ(lin(S), θϕ) ∈ {t, f}

κ is said to be not sufficiently labeled if it is not partly labeled.

The function isLabeled : K × S × Θ × {fully, partly} → B returns whether a knowledge base is
labeled fully or partly:

isLabeled(κ, S, θ, partly) = t⇔ “κ partly labeled with respect to (S, θ)”
isLabeled(κ, S, θ, fully) = t⇔ “κ fully labeled with respect to (S, θ)”

As mentioned in the overview, no specific formula ϕ is labeled at a time. Therefore,
there is no more need for a function labelOneFormula. Instead only a label function is used,
which is shown in Algorithm 4.1.

Algorithm 4.1 label : K× S×Θ× {fully, partly} → K
fun label(κ, S, θϕ, f) =

1: if isLabeled(κ, S, θϕ, f) then
2: return κ
3: end if
4: Ξ← collectContexts(κ, S, f)
5: Ξ← {(S′, θ′) ∈ Ξ | ¬isLabeled(κ, S′, θ′, partly)}
6: if f = fully ∧ ¬isLabeled(κ, S, θϕ, f) then
7: Ξ← Ξ ∪ (S, θϕ)
8: end if
9: if Ξ 6= ∅ then //Local checking not sufficient?

10: κ← labelByFixpoint(κ,Ξ, ϕ)
11: end if
12: return κ

The label function has a different signature than in the basic algorithm. It takes a knowl-
edge base κ, a sub-structure S and a call context θϕ. The result is an updated knowledge
base which is labeled with respect to (S, θϕ). The final parameter f determines if the label-
ing should stop once the the initial location is is labeled (partly) or whether all locations in
that sub-structure must under context θ must be labeled (fully).

The first check done by the algorithm is to check whether the input knowledge base is
already sufficiently labeled. If it is, the algorithm returns the unchanged knowledge base.
The rest of the function is comparable to labelOneFormula of the basic algorithm: First the
context to be labeled are collected (line 4), then they are labeled (line 10). Of course, there
are also differences. As mentioned, most of the labeling is already done in collectContexts.
Especially local checking is already performed in this step. This always yields a result for
non-temporal formulae and for EX. Local checking can only fail in case of EG and EU.
After the contexts are collected, already partly labeled contexts are removed from the set
Ξ (line 5). Now, Ξ only contains contexts which could not be labeled partly. This is exactly
the set of contexts which must be labeled using the usual fixed point algorithm. If Ξ is

68

4.3. Algorithmic Details

not empty (i.e., there were insufficiently labeled contexts), then the fixed point algorithm
is executed on this set (line 10). The labelByFixpoint function is the one from the basic
algorithm, as depicted by Algorithm 3.4 on page 48, with minor differences described in
the next section. Finally, the updated knowledge base is returned. If the check is to be
conducted fully but the context pair to be checked is not labeled fully after the context
collection, yet, then the pair is explicitly added to Ξ again (lines 6 to 8). This is necessary,
because line 5 would remove the pair from Ξ, if it is partly labeled. This would leave the
pair only checked partly, while fully checking is required. Other pairs in Ξ can always
safely be removed if they are partly labeled, because they were collected by horizontal
exploration which is always only performed partly.

The function collectContext, as presented in Algorithm 4.2, differs from the equally named
function from the basic algorithm, because it also performs the local checking and stops
the context-graph-exploration whenever a context pair can be decided locally.

Algorithm 4.2 collectContexts : K× S×Θ× {fully, partly} → ℘(S×Θ)

fun collectContexts(κ, S, θ, f) = λ(∅, κ, S, θ, f)
fun λ(Ξ, κ, S, θ ≡ 〈η〉τ, f) =

1: Ξ← Ξ ∪ (if τ ≡ > then {(S, 〈t〉τ)} else {(S, 〈t〉τ), (S, 〈f〉τ)})
2: κ← labelLocallyAndVertically(κ, S, θ, f)
3: for all c ∈ C(S) do
4: break when isLabeled(κ, S, θ, f)
5: θc ← cc(κ, c, θ)
6: Sc ← νS(c)
7: if (Sc, θc) /∈ Ξ ∧ ¬isLabeled(κ, Sc, θc, partly) then
8: λ(Ξ, κ, Sc, θc, partly) //Horizonal labeling
9: κ← labelLocally(κ, S, θϕ) //Try locally again

10: end if
11: end for
12: return Ξ

The first difference is the signature which now contains an additional parameter f stat-
ing whether the checking should be conducted fully or partly. The next change is that the
currently visited context pair is labeled locally and vertically (line 2). This might already
yield a knowledge base which is labeled sufficiently. To stop as soon as this is the case, the
first statement in the loop (line 4) leaves the loop as soon as the currently visited context
pair is sufficiently labeled. If this is the case in the first iteration, no call is actually pro-
cessed and the function returns immediately. The next difference is that the exploration
of calls is not done for calls which are already partly labeled (line 7). It is sufficient to la-
bel these calls only partly, because the only important value is the one of the initial state
which is used as assumption about the call. If a not sufficiently labeled call is found, it
is explored. A partly labeled context pair has a correctly labeled initial location and is
thus sufficient. After the horizontal checking, the algorithm tries to label the current con-
text locally again (line 9). This is important, because the horizontal checking might have
labeled the initial location of the explored context or even of another context which was
transitively checked. If this labels the context sufficiently, the loop will be left in the next
iteration (line 4). This ensures that no unnecessary further exploration is done. The rest of

69

Chapter 4. Incremental Refinement

the function is identical with the basic algorithm.
As the name states, the function labelLocallyAndVertically, as depicted in Algorithm 4.3,

conducts the local and vertical checking of a context pair.

Algorithm 4.3 labelLocallyAndVertically : K× S×Θ× {fully, partly} → K
fun labelLocallyAndVertically(κ, S, θϕ ≡ 〈η〉τ, f) =

1: if ¬isLabeled(κ, S, θϕ, f) then
2: κ← labelLocally(κ, S, θϕ) //Label locally
3: if ¬isLabeled(κ, S, θϕ, f) then
4: κ′ ← κ
5: if (τ ≡ ¬θψ | EXθψ | EGθψ | θψ ∨ θχ | EθψUθχ) ∧ ¬isLabeled(κ, S, θψ, fully) then
6: κ← label(κ, S, θψ, fully) //Vertical labeling w.r.t. ψ
7: end if
8: if (τ ≡ θψ ∨ θχ | EθψUθχ) ∧ ¬isLabeled(κ, S, θχ, fully) then
9: κ← label(κ, S, θχ, fully) //Vertical labeling w.r.t. χ

10: end if
11: if κ′ 6= κ then
12: κ← labelLocally(κ, S, θϕ) //Try locally again
13: end if
14: end if
15: end if
16: return κ

If the context is already sufficiently labeled, the function returns immediately (line 1).
Otherwise, the function first tries to label the context locally (line 2). After this try, it is
checked if the local checking already achieved a sufficient labeling (line 3). If this is the
case, the function returns immediately. If the local labeling did not suffice, the next step
is to do the vertical labeling, which means the labeling with respect to subformulae. As
mentioned, vertical labeling always has to be performed fully to ensure that all locations
are labeled with respect to the subformulae of ϕ. Of course, the labeling is only done for
a subformula if the knowledge base is not yet fully labeled with respect to that formula.
The conditional vertical labeling is performed in the lines 5 to 10. Finally, if any vertical
labeling was conducted, the algorithm tries to label the context locally again (line 12). This
must be done, because the vertical labeling of subformulae of ϕ could yield new results
which could be sufficient to label the context sufficiently with respect to ϕ.
Example: Consider the RKS R = ({A,B,C,D, . . .}, A) over propositions AP = {p, q}. The
sub-structures A,B and C of this RKS are depicted in Figure 4.1. The sub-structure D and
possible further sub-structures called by D are omitted. The RKS is to be model checked
with respect to the formula ϕ = E(EGp)Uq. Figure 4.2 depicts the order in which the in-
cremental checking process is conducted. In this figure, a rectangle depicts a formula to
be checked for a sub-structure. An arrow depicts the invocation of another check. Ver-
tical arrows represent a vertical labeling invocation while horizontal arrows represent a
horizontal labeling invocation. A rectangle highlighted in yellow depicts a partly labeling
while white rectangles are labeled fully. Note that the checking is usually performed on
context pairs. For simplicity reasons, the example context was left out in the figure. The
example is constructed so that the context never matters in it, so only the sub-structure of

70

4.3. Algorithmic Details

a1

p

a2

B()

a3

p

b1

p

b2

C()

b3

q

c1

p

c4

c2

p
c3

D()

A B C

Figure 4.1.: Sub-structures of an example RKS

E(EGp)Uq

EGp

p

q

2

3

4

5

EGp

7

EGp

8

E(EGp)Uq

p

q

9

p

610

1

A B C

Figure 4.2.: Order of the checking process of the RKS from Figure 4.1 with respect to for-
mula E(EGp)Uq

71

Chapter 4. Incremental Refinement

a context pair is important.

The checking starts by checking the initial sub-structure A against the full formula ϕ =
E(EGp)Uq (Arrow 1). The local check fails due to missing subformula labels. Therefore, a
check ofA against EGp is performed (2). This check also fails due to missing labels for p, so
A is labeled with p first (3). With the labels for p, the sub-structure can be fully labeled with
respect to EGp, because the self-loop in a3 ensures that EGp always holds in all locations
of A, regardless of the assumption about call a2. Thus, no other sub-structure has to be
regarded for this formula and the local checking succeeds. Next, the second subformula q
is checked on sub-structure A (4). Now, A is fully labeled with respect to all subformulae
of ϕ. However, the formula itself still cannot be decided, because no q label is in A and
thus the validity depends on the assumption about call a2. Therefore, a horizontal check
of B with respect to ϕ is invoked (5). Since B has no labels for any formula yet, the same
vertical checking is performed as for A (6,7,9). In contrast to A, B, or more precisely the
location b1, cannot be decided locally with respect to EGp. Instead, the validity depends
on the call b2. Thus, a vertical checking of C with respect to EGp has to be conducted
(8). After labeling p for this sub-structure (9), EGp can be decided locally for it. Here, it
is especially important that the horizontal check is conducted partly: c1 can be decided
locally due to its self-loop, but c2 cannot — it depends on assumptions about c3. Thus, a
full labeling would require a horizontal check of D. Because the labeling of c1 suffices for
the partly check, no further horizontal checking is necessary. After the partly labeling of C
is accomplished, B can be labeled with respect to EGp and also with respect to ϕ: b1 and
b3 both satisfy ϕ due to the path b1, b3 satisfying (EGp)Uq. Thus, the assumption about B
becomes true and a1 can also be labeled true, due to the path a1, b1, b3. Now the checking
is finished.

The example shows that the checking stops at C without checkingD. Now consider that
the RKS has thousands of further sub-structures called transitively from D. In this case,
the incremental refinement would have yielded a drastic speed-up.

The local labeling of κ with respect to a context and a formula is performed by the
function labelLocally as depicted by Algorithm 4.4. The exact meaning of local labeling
is to infer labels of a sub-structure call context pair (S, θϕ) without labeling any other sub-
structures or call contexts. The function is basically equal to computeLabels of the basic
algorithm, as depicted by Algorithm 3.3 on page 46. Note that the function β is the same
as for computeLabels (cf. Equation 3.6 on page 46). The most important difference is that
labelLocally does not loop over all contexts in a set Ξ and labels all of them. Instead, it labels
exactly one pair (S, θϕ), because this is the definition of local labeling. The only further
difference is that the function calls deduceLabels instead of labelByFixpoint for the cases EG
and EU. The reason for this is again the local labeling: While labelByFixpoint needs a whole
set of contexts, deduceLabels only needs one context pair to be labeled. The deduceLabels
function is the one of the basic algorithm (cf. 3.5 on page 50) with the difference that it must
be able to label a formula ϕ in the presence of m values for subformulae of ϕ, because it
might be the case that these subformulae are not labeled vertically yet. This is described
in the next section.

72

4.4. EG and EU Labeling in Presence of Subformula m Values

Algorithm 4.4 labelLocally : K× S×Θ→ K
fun labelLocally(κ, S, θϕ ≡ 〈η〉τ) =

if τ ≡ > then
for all l ∈ L(S) do κ(l, θϕ)← t

else if τ ≡ p ∈ AP then
for all l ∈ L(S) do κ(l, θϕ)← (p ∈ µS(l))3

5: else if τ ≡ ¬θψ then
for all l ∈ L(S) do κ(l, θϕ)← ¬κ(l, θψ)

else if τ ≡ θψ ∨ θχ then
for all l ∈ L(S) do κ(l, θϕ)← κ(l, θψ) ∨ κ(l, θχ)

else if τ ≡ EXθψ ≡ EX〈ηψ〉τψ then
10: for all l ∈ L(S) \ {lout(S)} do

κ(l, θϕ)← β(κ, c, θψ)
end for
κ(lout(S), θϕ)← ηψ

else if τ ≡ EGθψ | EθψUθχ then
15: κ← deduceLabels(κ, S, θϕ)

end if
return κ

4.4. EG and EU Labeling in Presence of Subformula m Values

Due to the incremental refinement, it may be the case that a context pair is to be labeled
with respect to a formula ϕ while not all locations in that context are labeled with respect
to the subformulae of ϕ. Thus, the definition of the associated Kripke structure K has to
be adapted to incorporate m and t versions of subformula labels. For example, while the
basic algorithm only used pψq to denote the validity of the subformula ψ in a location,
the incremental refinement must use pψq or pψ?q to denote that ψ holds or it is unknown
whether ψ holds, respectively.

Definition 4.4.1 (Incremental Associated Kripke Structure). Let S = (L, lin, lout, C, δ, µ, ν)
be a sub-structure, κ be a knowledge base and θ ≡ 〈η〉EGθψ | 〈η〉EθψUθχ be a call context. Let
AP = {pψq, pψ?q, pχq, pχ?q, pϕq, pϕ?q} be a set of atomic propositions.

Let α : T×AP ×AP → ℘(AP) be a function which is defined as follows:

α(t, pt, pm) =

{pt} if t = t

{pm} if t = m

∅ otherwise

The incremental associated Kripke structureKinc(κ, S, θ) = (S, I, δ, µ) is a Kripke structure
over the set of atomic propositions AP with

• the set of states S = L ∪ C ∪ {ω}

• the set of initial states I = {lin}

• the transition relation δ = δ ∪ {(lout, ω), (ω, ω)}

73

Chapter 4. Incremental Refinement

• the labeling function µ : S → ℘(AP) which is defined as follows:

µ(l) =

α(κ(l, θψ), pψq, pψ?q) if θ ≡ 〈η〉EGθψ
α(κ(l, θψ), pψq, pψ?q)

∪ α(κ(l, θχ), pχq, pχ?q)
if θ ≡ 〈η〉EθψUθχ

for all l ∈ L

µ(c) = α
Ä
κ(lin(S←c), cc(κ, c, θ)), pϕq, pϕ?q

ä
for all c ∈ C

µ(ω) = α(η, pϕq, pϕ?q)

The definition of the incremental associated Kripke structure Kinc resembles the one of
the basic algorithm (cf. Definition 3.5.1 on page 48), but provides t and m labels for the
subformulae ψ and χ. The formulae which are checked on this Kripke structure must also
be adapted to incorporate the new labels for subformulae.

Algorithm 4.5 deduceLabels : K× S×Θ→ K
fun deduceLabels(κ, S, θϕ ≡ 〈η〉τ) =

1: ϕt ← (if τ ≡ EGθψ then EGpψq else EpψqUpχq)
2: ϕt∨m ← (if τ ≡ EGθψ then EG(pψq ∨ pψ?q) else E(pψq ∨ pψ?q)U(pχq ∨ pχ?q))
3: for all l ∈ L(S) do
4: if κ(l, θϕ) = m then
5: if Kinc(κ, S, θϕ), l |= ϕt ∨ EpψqUpϕq then
6: κ(l, θϕ)← t
7: else if Kinc(κ, S, θϕ), l |= ¬(ϕt∨m ∨ E(pψq ∨ pψ?q)U(pϕq ∨ pϕ?q)) then
8: κ(l, θϕ)← f
9: end if

10: end if
11: end for
12: return κ

The modified deduceLabels function is shown in Algorithm 4.5. The formula for assigning
a t label has stayed the same. The formula for assigning an f label now contains the t and
m versions of the sub-formula propositions. This is obviously the correct replacement: An
f label can be assigned if no path exists where the formulae either surely holds (t) or it is
unknown whether the formula holds (m). It is not proven that this labeling is correct here.
A proof would be similar to the one for the correctness of the basic deduceLabels function,
as stated by Lemma 3.5.2.

4.5. Correctness of the Incremental Refinement

Many parts of the incremental refinement still use the same techniques as shown in the
previous chapter. Therefore, the proof for these techniques can be used for the incremen-
tal refinement, too. The only things which have to be proven are the aspects where the
incremental refinement modifies the basic algorithm. These are the following aspects:

1. The algorithm already performs local checking during the context collection. It has
to be shown that this labeling does not introduce incorrect labels.

74

4.5. Correctness of the Incremental Refinement

2. After the termination of the context collection and after partly labeled contexts are
removed from Ξ, it is checked whether Ξ is empty. If not, then the contexts in the
set are labeled with the labelByFixpoint function. This function is only defined for EG
and EU. Therefore, it must be proven that all other operators will certainly not yield
any unlabeled contexts in Ξ and thus labelByFixpoint will never be executed for these
operators.

3. The labelByFixpoint function only works correctly if all labels for subformulae of ϕ
are known. Otherwise, there could be a path with locations labeled m which is only
labeled m due to unknown subformulae. It would not be correct to label such path
with decideRemainingMaybes as done by labelByFixpoint.

4. The labeling of EG and EU is performed by labelByFixpoint as in the basic algorithm.
However, the set of contexts Ξ considered by the algorithm is not all reachable con-
texts. It has to be shown that this subset suffices to yield correct results.

The first point and the second point are rather straight-forward but the third point re-
quires some effort. The three points are to be proven one by one. Note that the proofs for
the incremental refinement are not conducted as precise as the proofs for the basic algo-
rithm. Nevertheless, they should be formally enough to be verifyable.

Lemma 4.5.1 (Correctness of the Local Labeling). The local checking performed during the
execution of collectContexts does not introduce incorrect labels.

Proof. The local checking is performed by labelLocally, as depicted in Algorithm 4.4. For
all operators except EG and EU, this function is equal to the computeLabels function of the
basic algorithm. Therefore, the same reasoning can be used to prove the correctness. The
only difference is that labels for subformulae might still be missing (i.e., m) in this step.
However, it is trivial to see that all operators used will yield correct results even in the
presence of m values.

The only difference to computeLabels is that deduceLabels is used for EG and EU formu-
lae. As already said in the section where this function was introduced for the incremental
refinement, its correctness is not proven explicitly because this proof is quite similar to the
proof for the correctness of the basic deduceLabels function, as stated by Lemma 3.5.2. The
correctness can be deduced trivially using the reasoning in that proof.

The next point to be proven is that all operators except EG and EU are already labeled
during the context collection. Therefore, the set Ξ is empty after removing partly labeled
contexts and labelByFixpoint is not executed for these operators.

Lemma 4.5.2 (collectContexts always decides trivial operators). Let ϕ ≡ > | p ∈ AP | ¬ψ |
ψ ∨ χ | EXψ be a CTL formula. The function labelByFixpoint will never be called for ϕ when
performing the incremental labeling algorithm on this formula.

Proof. The function labelByFixpoint will not be executed by the label (Algorithm 4.1), if the
set Ξ is empty. This is the case, if all context pairs that were added by collectContexts are
partly labeled, because then they will be removed from the set at line 5 of Algorithm 4.1.

Formulae of the form ϕ ≡ > | p ∈ AP are trivially labeled locally without considering
further contexts than the initial one.

75

Chapter 4. Incremental Refinement

The non-temporal formulae ϕ ≡ ¬ψ | ψ ∨ χ are also labeled without considering other
contexts than the initial one. In this case, the call to labelLocallyAndVertically will label
the initial context. Therefore, no further context will be added. First, the function label-
LocallyAndVertically performs a local labeling step. This step might fail due to missing
subformula labels. If this is the case, then the context is labeled fully with respect to the
subformulae of ϕ and then the local labeling is repeated. This time, the local labeling will
certainly label all locations, because the context is labeled fully with respect to all subfor-
mulae now.

In case of ϕ ≡ EXψ, additional contexts might be visited. However, all visited context
will be labeled at least partly, because EX can always be labeled as long as the validity of ψ
is known for called contexts. This is surely the case for all visited contexts, because a full
labeling of subformulae is performed during the execution of labelLocallyAndVertically.

For the remaining cases ϕ ≡ EGψ and ϕ ≡ EψUχ, it must be shown that all contexts in Ξ
are fully labeled with respect to ψ and χ, because otherwise, the labelByFixpoint algorithm
might fail.

Lemma 4.5.3 (Contexts in Ξ are Fully Labeled With Respect to Subformulae). Let ϕ ≡
EGψ | EψUχ be a CTL formula and κ a knowledge base, as given to the labelByFixpoint(κ,Ξ, ϕ)
operation in Algorithm 4.1. At this point of the algorithm, the knowledge base is always fully
decided for all context pairs in Ξ with respect to the formulae ψ and χ (the latter only in case of
ϕ ≡ EψUχ).

Proof. By contradiction: consider a pair (S, θϕ) in Ξ which is not labeled fully with respect
to ψ and χ. This pair was inserted and thus visited by collectContexts. This function calls
labelLocallyAndVertically for the visited pair, which first tries a local labeling. If this labeling
suffices to label the context pair at least partly, then the method returns. In this case, the
pair cannot be in the set Ξ, because it would have been removed after the context collection,
since it is partly labeled. Thus, the local labeling could not suffice to label (S, θϕ) partly.
In this case, the labelLocallyAndVertically performs a full vertical labeling with respect to all
subformulae of ϕ. Therefore, (S, θϕ) is fully labeled with respect to all subformulae which
contradicts the assumption that it is not.

The last thing to be proven is that the set Ξ, which is not the set of all reachable con-
text pairs in the incremental refinement, suffices so that the labelByFixpoint yields a correct
result. This property, which is called check-set completeness, is proposed by Proposition
4.5.7. To prove this proposition, some additional lemmas are used:

Lemma 4.5.4 (Check-Set Isolation). Let Ξ be the result of the collectContext function, from which
the partly decided context pairs have already been removed. For all context pairs (S, θ) and all calls
c ∈ C(S), the context pair (S←c, θ(c, θ)) which depicts the target context pair of c is either in Ξ or
is partly labeled:

∀(S, θ) ∈ Ξ, c ∈ C(S) . isLabeled(κ, S←c, θ(c, θ), partly) ∨ (S←c, θ(c, θ)) ∈ Ξ

Proof. Consider an arbitrary pair (S, θ) ∈ Ξ. Since the pair is in Ξ, it was visited by Al-
gorithm 4.2. In this step, the algorithm has visited (and thus added to Ξ) either all target
pairs (S←c, θ(c, θ)) of all calls c ∈ C(S) or has terminates early if (S, θ) had become labeled

76

4.5. Correctness of the Incremental Refinement

fully or partly. If the latter would be the case, then (S, θ) would be removed from Ξ. Since
it is assumed that (S, θ) is in Ξ, all target pairs (S←c, θ(c, θ)) must have been visited and
are thus in Ξ or have been removed from it if they are decided.

Lemma 4.5.5 (Partly decided context pairs can be left out). Let κin be a knowledge base, ϕ a
CTL formula, and Ξ a set of context pairs obtained from the context collection and removal of partly
decided contexts in Algorithm 4.1. Let (S′, θ′ϕ) /∈ Ξ be a context pair for which κin is partly labeled
with respect to ϕ. Let

κ← labelByFixpoint(κin,Ξ, ϕ)

and
κ′ ← labelByFixpoint(κin,Ξ ∪ {(S, θϕ)}, ϕ)

The addition of (S′, θ′ϕ) does not alter the result of labelByFixpoint with respect to all context pairs
in Ξ:

∀(S, θϕ) ∈ Ξ, l ∈ L(S) . κ(l, θϕ) = κ′(l, θϕ)

Proof. If κin is partly labeled with respect to ϕ for the context pair (S′, θ′ϕ), then the label
in the initial location lin(S′) under context θ′ϕ is already t or f . Since the labelByFixpoint
algorithm assigns labels to a location only if the location is labeled m, it is certain that the
label in lin(S′) with respect to ϕ will not be changed by labelByFixpoint. The only way how
a context pair a = (Sa, θaϕ) can influence the labels assigned to locations in another context
pair b = (Sb, θbϕ) during the execution of labelByFixpoint is through the label in the initial
location lin(Sa), which is used as label for calls in C(Sb) which call Sa under call context
θaϕ. Since it was shown that the label lin(S′) in the initial location of S′ is firm, the addition
of (S′, θ′ϕ) in the labeling algorithm will not have any effect on any other context pairs
(S, θϕ) ∈ Ξ. Therefore, the resulting knowledge bases κ and κ′ must be equally labeled
with respect to ϕ in all context pairs in Ξ.

Lemma 4.5.6 (Addition of unconnected context pairs). Let κin be a knowledge base, ϕ a CTL
formula, and Ξ a set of context pairs obtained from the context collection and removal of partly
decided contexts in Algorithm 4.1. Let (S′, θ′ϕ) /∈ Ξ be a context pair which is not called from any
call in any pair in Ξ:

∀(S, θϕ) ∈ Ξ, c ∈ C(S) . (S←c, θ(c, θϕ)) 6= (S′, θ′ϕ)

Let
κ← labelByFixpoint(κin,Ξ, ϕ)

and
κ′ ← labelByFixpoint(κin,Ξ ∪ {(S, θϕ)}, ϕ)

The addition of (S′, θ′ϕ) to Ξ does not alter the result of labelByFixpoint with respect to all context
pairs in Ξ:

∀(S, θϕ) ∈ Ξ, l ∈ L(S) . κ(l, θϕ) = κ′(l, θϕ)

Proof. A pair which is not in the set Ξ and not called from any pair in Ξ could only affect
the labels assigned to a location in a pair in Ξ by transitively affecting the label in the initial
location in other pairs which are called from a pair in Ξ. Since Ξ is isolated (Lemma 4.5.4),
pairs in it call only other pairs in it or partly labeled pairs. Thus, the only possibility how

77

Chapter 4. Incremental Refinement

an unconnected pair could be connected to a pair in Ξ is via a partly labeled pair. Due
to Lemma 4.5.5, the further labeling of a partly labeled pair has no effect on its callers.
Therefore, the addition of an unconnected pair cannot have any effect onto pairs in Ξ.

Proposition 4.5.7 (Collected context pairs suffice). Let κin be a knowledge base, ϕ a CTL for-
mula, and Ξ a set of context pairs obtained from the context collection and removal of partly decided
contexts in Algorithm 4.1. Let (S′, θ′ϕ) /∈ Ξ be a context pair. Let

κ← labelByFixpoint(κin,Ξ, ϕ)

and
κ′ ← labelByFixpoint(κin,Ξ ∪ {(S, θϕ)}, ϕ)

The addition of (S′, θ′ϕ) does not alter the result of labelByFixpoint with respect to all context pairs
in Ξ:

∀(S, θϕ) ∈ Ξ, l ∈ L(S) . κ(l, θϕ) = κ′(l, θϕ)

Proof. Because of Lemma 4.5.4, a pair (S′, θ′ϕ) which is not in Ξ is either partly labeled or
not directly called from any pair in Ξ. If the pair is partly labeled, its addition to Ξ does
alter the labels assigned to locations in any other pair in Ξ, due to Lemma 4.5.5. If the pair
is not directly called from any pair in Ξ, its addition to Ξ does not alter the labels assigned
to locations in any other pair in Ξ, due to Lemma 4.5.6.

Now that all differences to the basic algorithm are proven, the whole correctness can be
specified:

Theorem 4.5.8 (Correctness of the Incremental Refinement). Let κ = (_ 7→ m) be an empty
knowledge base,R = (S, Sin) an RKS, and ϕ a CTL formula. A call to

κ′ ← label(κ, Sin, icc(ϕ), partly)

returns a knowledge base κ′ which has the correct label with respect to the validity of ϕ in the initial
configuration ([cin], lin(Sin)):

κ′(lin(Sin), icc(ϕ)) = t⇔ R |= ϕ

∧ κ′(lin(Sin), icc(ϕ)) = f ⇔ R 6|= ϕ

Proof. The correctness follows from the correctness of the basic algorithm (Theorem 3.6.1)
and from the correctness of all modifications done to it (Lemma 4.5.1, 4.5.2, 4.5.3, and
Proposition 4.5.7).

78

Chapter 5.

Implementation

The algorithms presented in the previous chapters have been implemented by extending
the model checker XMV, which is written in OCaml. The extended model checker is called
RMV (recursive XMV). Because the descriptions of the approaches in the previous sections
are already very precise, they allow the implementation of the algorithms without addi-
tional explanations. Therefore, this section only elaborates how the formal concepts are
realized, how the data is represented, and which optimizations are made. The chapter also
covers how the input for the model checker is specified and how this input is transformed
into an RKS. Ultimately, a brief evaluation of the resulting implementation is conducted.

5.1. Input Specification

An important part of a model checker is the specification of its input format, that is, how
sub-structures to be checked must be represented in an input file. The input format of
XMV is almost equal to the one of NuSMV, which allows checking an input file with both
model checkers without the necessity to rewrite it. The input format of XMV is extended
to allow the specification of RKSs.

Since the input for recursive Kripke structures is based on the input for usual Kripke
structures, the non-recursive part is elaborated first. Listing 5.1 shows a non-recursive in-
put module, which displays most features of XMV. It defines a usual non-recursive Kripke
structure with a left-total transition relation instead of an exit location. The syntax is equal
to the one of NuSMV.

A module definition starts with the word MODULE followed by the name of the module.
Such a module represents a Kripke structure in the non-recursive case and a sub-structure
in the recursive case. The module name is especially important for recursive modules
where it is used as call target for calls which call this sub-structure. The first part of a
module is the definition of variable (VAR). Variables can either be bounded integer vari-
ables (e.g., 0,...,6), enumerations (e.g., {s1,s2,s3}), or Boolean variables. After the
variables, the labels are defined (DEFINE). Each label is denoted by a name and followed
by a condition which defines in which states the label is present. In the example, the label
in_state2 is present in each state where the variable state has the value s2. The second
label cr_reset is present in each state in which the counter variable is zero. The next
part of a module definition (ASSIGN) contains the specification of the transition relation
and of the initial state. For each previously defined variable, an init and a next state-
ment has to be given. The init statement defines the value of the variable in the initial
state. The next statement defines how the variable changes its values.

79

Chapter 5. Implementation

Listing 5.1: A Non-Recursive XMV Input Specification

1 MODULE main VAR
2 counter : 0..6;
3 state : {s1,s2,s3};
4 ready : boolean;
5 DEFINE
6 in_state2 := state in {s2};
7 cr_reset := counter = 0;
8 ASSIGN
9 init(state) := s1;

10 next(state) :=
11 case
12 counter = 2 : {s1};
13 TRUE :
14 case
15 state = s1 : {s2,s3};
16 state = s2 : {s2};
17 state = s3 : {s3,s1};
18 esac;
19 esac;
20 init(counter) := 0;
21 next(counter) := (counter + 1) mod 3;
22 init(ready) := FALSE;
23 next(ready) := case
24 counter = 2 : !ready;
25 TRUE : ready;
26 esac;
27 SPEC AG (in_state2 -> cr_reset)
28 SPEC E [in_state2 U cr_reset]

80

5.1. Input Specification

The semantics of a module concerning the state space is that the value of all variables
together determines a state. The initial state is the one in which all variables have the value
which was given to them by the init statement. In the example, the initial state would
be the values (0,s1,FALSE) for the variables counter, state, and ready, respectively.
This vector notation for a state is used in the examples hereinafter. Note that the init
statement may not yield more than one value per variable in the recursive case, since this
would yield more than one initial location. For the non-recursive case, however, more than
one initial state may exist.

The semantics of the next statement defines the transition relation. A transition from
one state s1 to another state s2 exists, if the next statement applied to each value of s1
would possibly yield s2. As long as the next statement yields exactly one value for each
variable, each location has only one successor location. To add transitions to more than one
location, the next statement must yield a set value which contains more possible values.
In the example, this is the case for the state variable. If this variable is s1, the next value
is either s2 or s3. Since all other variables yield always exactly one value, states in which
the variable state is s1 will have two successor locations. If more variables have more
than one possible successor value, then all possible combinations of the values become
successor states. In the example, the initial state (0,s1,FALSE) has a transition to the state
(1,s2,FALSE) and to the state (1,s3,FALSE). Using this information, the Kripke structure
corresponding to the input specification can be built. The Kripke structure corresponding
to the specification in Listing 5.1 is shown in Figure 5.1. The upper line in each state shows
the values of the variables in this state, the lower line shows labels in the state, if it has any.

(0,s1,F)

cr_reset

(1,s2,F)

in_state2

(2,s2,F)

in_state2

(1,s3,F)(2,s1,F)

(1,s3,F)

(0,s1,T)

cr_reset

(1,s2,T)

in_state2

(2,s2,T)

in_state2

(1,s3,T)(2,s1,T)

(1,s3,T)

Figure 5.1.: The Kripke structure corresponding to Listing 5.1

The final part of a module are the CTL formulae which should be checked for this mod-
ule. Each formula starts with the SPEC keyword, followed by a CTL formula which may
use the labels defined in the DEFINE part as atomic propositions.

81

Chapter 5. Implementation

Recursive Modules

While a non-recursive module models a whole Kripke structure, a recursive input mod-
ule instead models one sub-structure of an RKS. Therefore, multiple modules must be
used to define a whole RKS. The syntax and the semantics are similar to the ones of non-
recursive modules. However, the syntax is extended to allow the specification of an exit
state and calls.

Listing 5.2 shows the specification of an RKS consisting of two sub-structures (modules).
The differences to a non-recursive specification is the CALL section and the EXIT expres-
sion. The CALL section defines the calls and their targets. The syntax is similar to the one
of the DEFINE section. However, the name in front of the assignment operator (:=) is no
label but the name of the sub-structure which is to be called. The expression after the as-
signment operator is a condition which defines in which states the call is to be made. In
the example, the module foo calls the module bar in the states where the variable state
is s1.

The second addition is the EXIT expression. Each variable, even if it is of type Boolean
can implicitly also have the value EXIT. Once a variable has this value, it keeps it forever.
This means that no further next transitions will be considered for a variable. Once all
variables have the value EXIT, the exit location of the sub-structure is reached. Because
EXIT is implicitly part of the type of each variable, it does not have to be defined in the
variable definition. In the example, the variable state in module foo is only defined over
the enumeration {s1,s2}. Nevertheless, the variable can still become EXIT. Because the
exit location is a usual location, it can have labels, like the label q in module foo, which is
assigned to the exit location. The RKS represented by the input specification from Listing
5.2 is shown in Figure 5.2.

f1

q
foo

f2

bar()

EXIT

p

b1

y,q
bar

b2

foo()

EXIT

x,q

b4

foo()

b3

q

b5

Figure 5.2.: RKS corresponding to the specification from Listing 5.2

Recursive modules share labels, that is, a label with the same name in two modules is
considered to be the same label. In the example, the label q is treated as the same label
in both module. This is necessary for specifying non-local properties. In contrast, the
names of variables and enumeration constants are local. Even if variables in different

82

5.1. Input Specification

Listing 5.2: A Recursive XMV Input Specification

1 MODULE foo
2 VAR
3 state : {f1,f2};
4 DEFINE
5 p := state in {EXIT};
6 q := state in {f1};
7 CALL
8 bar := state in {f2};
9 ASSIGN

10 init(state) := f1;
11 next(state) := case
12 state = f1 : {f2};
13 state = f2 : {EXIT};
14 esac;
15 SPEC E [q U p]
16 SPEC EF q
17 SPEC EF p
18
19 MODULE bar
20 VAR
21 state : {b1,b2,b3,b4,b5};
22 DEFINE
23 q := state in {b1,b2,EXIT};
24 x := state in {EXIT};
25 y := state in {b1};
26 CALL
27 foo := state in {b2,b4};
28 ASSIGN
29 init(state) := b1;
30 next(state) := case
31 state = b1 : {b2,b4};
32 state = b2 : {b3};
33 state = b3 : {EXIT};
34 state = b4 : {b5};
35 state = b5 : {EXIT};
36 esac;
37 SPEC EF x
38 SPEC y

83

Chapter 5. Implementation

modules share the same name or share enumeration constants, these names are treated
to be different. In the example, the variable state appears in both modules but with
different enum constants. However, it would also be possible to share enum constants,
for example, by using s0,. . . ,s1 as state constants in both modules. These variables and
their values are treated as separate ones. Keeping variables and constants separate is a
necessary precaution, because sharing variables would mean sharing state space which is
explicitly forbidden for sub-structures of an RKS.

The final missing information is which of the sub-structures is defined to be the initial
one. RMV is able to use different initial structures for different formulae. This is handy
feature of RMV which allows checking different formulae for different sub-structures with
one run of the program. Note that both modules have CTL formulae assigned to them. For
each formula, the module in which the formula is defined is treated as initial sub-structure.
For example, the formula EpUq is defined in the module foo. Thus, the formula is checked
using the RKSR = ({foo, bar}, foo). In contrast, EFx is defined in module bar and therefore
is checked usingR = ({foo, bar}, bar) as RKS.

RMV ensures that the modules represent well-formed sub-structures. For example, the
program raises an error if a call has a label, the entry or exit location of a module is a call,
or if a call is a successor of another call.

Note that the example specification in Listing 5.2 is typical for specifications for static
code analysis, because it contains only one variable. Static code analysis needs to solve
properties of the control flow graph. This graph is usually represented by only one variable
which represents the program counter, that is, the current state in the control flow graph
(it is therefore often called state). The state space of this variable is all the nodes of
the control flow graph and the transitions are defined to reflect the edges of the graph.
The states of the control flow graph have no names and are thus often only enumerated
abbreviations, like the names b1,b2,. . . in the example.

5.2. State Space Generation

As the last section has shown, the input specification has to be transformed to a corre-
sponding RKS (or merely a Kripke structure in the non-recusrive case) before the model
checking can be conducted. Since RMV represents the state space explicitly, the state space
of an RKS can be built by graph exploration. The exploration starts at the initial location,
which can be deduced by evaluating all init expressions. Starting from this location, the
outgoing transitions can be computed by evaluating the next expression. For each vari-
able, the corresponding expression yields a set of values which the variable can have in
the next step. The cross product of the set for each variable yields the successor states.
For example, if a sub-structure consists of three integer variables a, b, and c and the eval-
uation of the next expressions of these variables yield the values A = next(a) = {1, 2},
B = next(b) = {5, 6}, and C = next(c) = {8, 9}, then the resulting set of successor states is

A×B × C = {{1, 5, 8}, {2, 5, 8}, {1, 6, 8}, {1, 5, 9}, {2, 6, 8}, {2, 5, 9}, {1, 6, 9}, {2, 6, 9}}

After the successor states have been computed, they are visited recursively. Each visited
state is created, saved, and the transition to that state which led to it is created. A state

84

5.3. Data Representation

which has already been created is not visited again, but a transition is created to it when-
ever it appears again as a successor. After the recursive visiting is finished, the complete
state space is created.

After the state space is built, the labels are placed. This is done by evaluating the expres-
sion for each label definition. The resulting set of states is then assigned the corresponding
label.

The state space and label generation is only a preprocessing step which is performed
before the actual model checking. Therefore, it should not take more time than the model
checking itself. To allow the state space and label generation in a reasonable period of time,
some optimizations have to be conducted. The computation of the next-expression for a
variable can be non-trivial. It is often a case construct which performs a case distinction
over the value of the variable. Thus, the amount of cases is equal to the amount of values
the variable can have. If a case statement is evaluated naïvely, that is, by evaluating each
case expression sequentially and stopping once the first expression evaluates to true, the
process of finding the correct case is in O(n) where n is the number of cases. Since this
computation has to be done again in each state, the overall complexity is O(n×m) where
m is the number of states. If the state space of a sub-structure is represented by a single
variable, then the number of cases is usually equal to the number of states, yielding O(n2).
It is obvious that this complexity can become a problem even for moderately large sub-
structures. Therefore, it is viable to check whether a case statement can be evaluated using
a table lookup. If all expressions are of the form x = c where x is the next-variable and c is
one of its possible values, then it is possible to evaluate the case construct using a lookup
table, thus requireing only O(1), yielding O(n) for the state generation process.

Another important optimization is to introduce some state indexing to allow the faster
assignment of labels. Naïvely, the set of states which is to be labeled with a label is obtained
by checking for each state whether the expression that defines the label holds in that state,
yielding a complexity of O(s × l) where s is the number of states and l is the number
of labels. When having many states and labels, this again yields a quadratic complexity.
By keeping an index, which, for example, orders all states with respect to the value of
one variable, the complexity can be reduced for simple expressions like state = s1 by
looking up only states for which the variable state is s1 instead of testing all states.

Even more optimizations like constant expression propagation were performed in the
implementation. Without optimizations, the time for building and labeling the state space
of larger sub-structures was often longer than the time for model checking these sub-
structures. With all optimizations, the time is now usually neglectable compared to the
model checking time. Note that all optimizations presented here also apply to the non-
recursive part of RMV. Here, they yielded a large performance gain, as well.

5.3. Data Representation

RMV is an explicit model checker. Therefore, the state space of the sub-structures (but
of course not of the possibly infinite semantic Kripke structure) is built and represented
explicitly. Since most of the algorithm works on this explicit state space, its representation
is very important for the performance of the algorithm.

The first decision concerning state space representation is the representation of locations

85

Chapter 5. Implementation

and calls, which are hereinafter also referred to as states. Using a good representation
speeds up other data structures which operate on the states, like the labeling function µ
and the call target function ν.

An easy representation, which is also very beneficial for mappings, is to use integers
to represent states of a sub-structure. These integers should be very dense to allow using
them as indexes for densely packed arrays. For example, a sub-structure with ten states
should represent them with the number 0, . . . , 9. Such dense integers can be obtained by
performing a traversal of the sub-structure and enumerating the states during the traver-
sal, starting with zero for the initial state.

While a hash or tree map would be the most natural implementation for mappings like
µ and ν, the dense numbering of states allows to use ordinary arrays for these mappings.
The numbers of the states can directly be used as indexes in these arrays. This is faster than
using hashes and also takes up less space. In addition, the data is packed more densely
than a hash map which also promises better caching behaviour.

In addition to the states, also the labels are also represented by integers by enumerating
all labels in a sub-structure. Thus, the labeling function µ can be implemented as an array
of integer sets. The representation of the integer sets can range from a tree set, to a list,
or even a bit-set. In the case of RMV, tree sets were used. The transition relation δ can
be expressed in the same way. This allows fast look-up of the successors of a state, which
is directly given by the set found in the array at the index of the state. Since the model
checker also needs to look-up the predecessors of a state, a reverse transition mapping
δ−1 is maintained, as well. The call target mapping ν can be implemented as an array of
pointers to other sub-structures.

Because the initial location always receives the index 0, it does not have to be represented
explicitly. The set of states L ∪ C is simply expressed by the number of states n, which
represents the set of states {0, . . . , n− 1}.

In addition to all these components, a sub-structure implementation must also contain
mappings from the indexes of states and labels back to their respective string represen-
tation. These mappings are needed for the visual output of the program which should
for example state the label names instead of their indexes. Since these mappings are not
needed for the model checking itself, their performance is only of a very minor impact.
Therefore, hash maps were used for these purposes.

A sub-structure is represented as a struct of the aforementioned components. A recur-
sive Kripke structure is implemented as a list of sub-structures. The initial sub-structure is
represented implicitly by the convention that the first sub-structure in the list is the initial
one.

Array Versus Struct Representation

The current implementation uses only integers as states and represents all further func-
tions, relations, and mappings as arrays. Another approach with high performance could
be to model each state as a struct which then for instance has its successors states and
its labels as fields. This would allow even faster access than the current approach which
always needs an array look-up. However, the array approach has significant advantages:

• The caching behaviour is better since all data is kept close together in an array.

86

5.4. Optimizations

• The basic model checking process requires many set operations on sets of states like
union and intersection. These operations would be complex and costly if each state
was represented as a struct. By using arrays, states are only integers, and can be
stored conveniently in tree sets or bit sets which offer fast implementations for set
operations. For example, a bit set can use the very fast bitwise-or operation as im-
plementation for the set union operation.

• The algorithm often needs to create and initialize a sub-structure from another one
and change for instance only the labeling ν. Using arrays, it is easy to replace the
labeling ν while reusing all other components of the old sub-structure. This can be
done by having the new sub-structure point to the old arrays and only use a new
array for the labels. If states were represented as structs, it would be necessary to
replicate each state in a sub-structure to create a new sub-structure which only differs
in its labeling. This would yield a significant slowdown of the algorithm and increase
the memory consumption.

These disadvantages of the struct representation leaded to the decision to use the array
representation for the implementation of RMV.

5.4. Optimizations

There are some optimizations of the algorithms presented in this thesis which were omit-
ted until now, because they are not conceptually useful. However, such optimizations
yield a noticeable speed up and therefore should be included in an implementation which
is to be used for large inputs. Therefore, they are shortly presented here.

The most important optimization is a more sophisticated implementation of the fixed
point algorithm. As depicted in the previous chapters, the fixed point algorithm naïvely
iterates over all sub-structures and tries to deduce new labels using local model checking of
the associated Kripke structure. Since the number of iterations necessary growths with the
formula depth, this can lead to a number of iterations where each sub-structure is checked
again in each iteration although no new results for that sub-structure can be deduced.
Consider the example from page 58 where an RKS is checked against a nested EF formula.

Table 5.1.: Fixed point algorithm results from previous example
Context fff fft ftt tff tft ttt

c1 t(4) t(2) t(2) t(1) t(1) t(1)

c3 f(1) f(1) f(1) t(1) t(1) t(1)

d1 t(3) - t(1) t(1) - t(1)

d3 f(1) - t(1) t(1) - t(1)

Table 5.1 again depicts the result of the fixed point algorithm for formula E>U(p ∧
E>U(q ∧ E>Up)) in the example. As shown in the table, the fixed point algorithm needs
four iterations. In each iteration, all ten context pairs are model checked locally, yielding
40 local checks. The table however shows that it would be sufficient to check all ten context

87

Chapter 5. Implementation

pairs only once and then only (C,fft) and (C, ftt) in the second step, (D,fff) in the third
step and (C,fff) in the fourth, because only these context pairs change in the respective
steps. Performing such checking would yield only 10 + 2 + 1 + 1 = 14 instead of 40 local
checks, which is a very significant speed-up. The contexts which have to be checked after
a step can easily be inferred if back-pointers from a context pair to all pairs which call that
pair are kept: Whenever the validity of the initial location of a sub-structure in a specific
context pair x is switched from m to t or f , then only context pairs calling x have to be
re-checked instead of all context pairs.

Another optimization is the omitting of context assumptions for atomic propositions,
because these are only important for EX formulae. For all other formulae, the keeping of
these context assumptions increases the number of reachable context pairs unnecessarily.
For example, the formula EpUq has only two possible non-m contexts (namely 〈f〉EpUq
and 〈t〉EpUq) when not considering assumptions about atomic propositions but eight pos-
sible contexts with these assumptions. Either EX could be left out completely, since it is of
no use in static analysis anyway, or an approach comparable to the one of Fehnker et al. (cf.
Appendix A) can be used to solve EX. The context assumptions for atomic propositions
were only presented here for simplicity reasons, because they allow to solve EX in a very
natural, easily provable way.

The next point which was left unoptimized due to simplicity reasons is the context col-
lection. The collectContext operation always collects both versions of a call context, one
with t as topmost context assumption and one with f as topmost context assumption. The
reason for this is that the topmost context is not known yet and keeping both contexts en-
sures that always the correct one is included. There are, however, some formulae for which
the correct context can be inferred easily. An example for this would be ϕ ≡ ¬ψ. For this
formula, the topmost context assumption is always the opposite of the context assumption
of ψ. All non-temporal operators allow to infer the context assumption that easily. By col-
lecting only the correct context whenever it can be inferred directly, the number of contexts
to be model checked is reduced.

A final optimization which is yet to be introduced to the implementation of RMV does
not concern the algorithm itself, but the data representation. Currently, the model check-
ing process uses the basic OCaml implementation of tree-sets for representing sets of states.
The advantage of these sets, when, for example, compared to hash-sets is that they allow
the executions of frequently needed set operations like union, difference and intersection
very efficiently. A better representation, which can efficiently be executed on modern hard-
ware would be bit sets. These sets ususally consume less memory and the set operations
can be implemented very efficiently using bitwise operations. Since modern hardware
with vector extensions allows to perform these operations on more than one integer con-
currently, they can be even more efficient.

5.5. Evaluation

Because Goanna is currently not yet able to produce RKS specifications from C/C++ code
but only “usual” non-recursive Kripke structure specifications, the performance of the al-
gorithm cannot be evaluated using real static analysis examples, yet.

Concerning the non-recursive model checking algorithm, XMV, which was also opti-

88

5.5. Evaluation

mized during this thesis, is now very well suited for static code which usually consists
of state spaces with less than a million states but many formulae to be checked. As an
example, a randomly generated single-module input specification with 5000 states and
4500 formula specifications was model checked on a modern laptop in 0.372 seconds by
XMV while the latest release of NuSMV needed 9.57 seconds. This landslide victory for
XMV shows that explicit state representation is the representation of choice for the kinds
of problems for which XMV is designed.

89

Chapter 6.

Conclusion & Future Work

In this thesis, an algorithm for model checking of recursive Kripke structures and an in-
cremental refinement of that algorithm were proposed. It was reasoned about the formal
basis for these algorithms and their correctness was proven. The algorithms were also
implemented into the model checker XMV.

The thesis started with the formal definition of Kripke structures, CTL and its seman-
tics on Kripke structures, and finally recursive Kripke structures including execution and
CTL semantics. Then, a method for reducing the possibly infinite number of reachable call
stacks to a finite number of equivalence classes was proposed. It was argued that two call
stacks calling the same sub-structure S are equal with respect to the model checking of a
CTL formula ϕ, if the same subformulae of ϕ, including ϕ itself, are true in configurations
which are reached once S exits. This set of valid subformulae, which was presented in
a tree-like manner, was coined call context. Next, the knowledge base κ was introduced
which stores the already deduced validity values of formulae in certain configurations.
Afterwards, an algorithm for model checking RKSs with CTL, which relies on the intro-
duced concepts, is presented and its correctness is proven. Subsequently, a refinement
of the algorithm is proposed which performs only local model checking and reduces the
problem complexity by checking formulae incrementally only in sub-structures which are
necessary to yield a correct result in the initial configuration. In the next chapter, the im-
plementation of the algorithms into the model checker XMV (yielding the model checker
RMV) was depicted. Here, the structure of the input specification was shown, appropriate
data structures and mechanisms for optimizing the algorithm and yielding a high perfor-
mance were discussed, and a brief evaluation of RMV was conducted.

An obvious topic for future work is a comprehensive evaluation of the algorithms by
benchmarking their performance for static analysis of large software projects, like, for ex-
ample, Firefox or the Linux kernel. Such study could yield how large the performance
increase of the incremental refinement, when model checking RKSs consisting of thou-
sands of sub-structures, is. A related topic would be the benchmarking against other static
analysis tools which use other mechanisms like pushdown automata for the model check-
ing.

The current approach is limited to labels only based on the location. An interesting topic
would be to increase the expressiveness of the model by allowing certain properties with
respect to stack content, scope, or call hierarchy. To keep the applicability for static analysis
of large projects, the additional features must be chosen carefully. Otherwise, the resulting
problem could be to hard to solve with the required performance or even be undecidable.

Another possibility for increasing the expressiveness of the model would be the intro-
duction of local, parametrized labels. Currently, all labels are global to the whole RKS.

91

Chapter 6. Conclusion & Future Work

This is appropriate when checking, for example, properties of global variables, like check-
ing whether a global or local pointer variable is dereferenced when it is null. These labels
are ,however, not fully appropriate for checking the same property for pointer variables
which are handed as parameters to a function f . In this case, reads and writes to that pa-
rameter could be encoded as parametrized labels. For example, a label read(x) could be
used whenever a parameter x is read. When the function (i.e., the sub-structure) f is called
with two different variables a and b as argument, the parameter can be substituted with
the argument thus forming the labels read(a) and read(b). When considering a formula
with parametrized labels like EG read(x), the algorithm would model check f only once
with respect to read(x) and then use the results for model checking of functions that call
f for both formulae EG read(a) and EG read(b), depending on the variable which is used
in the call to f . In addition, this approach could allow to define wildcard formulae like
AFwrite(∗), which encode that for each variable, there is a path where it is written. It is
to be investigated how this can be handled without explosion of the model checking com-
plexity. In addition, it must be checked how the model must be extended to allow these
parametrized labels.

In conclusion, there is still a lot of work to be done in the field of model checking recur-
sive Kripke structures and thus a lot of possibilities for future research in this field exist.

92

Appendix A.

Basic Approach

This chapter depicts the algorithm of Fehnker et al. [44] on which the algorithms in this
thesis are based. In addition to renarrating the concepts of their algorithm, the parts of the
algorithm which were not described formally in [44] are formalized here. Finally, a proof
sketch for the correctness of the algorithm is given.

A.1. Overview

Because the algorithm elaborated in this thesis is based on the basic algorithm presented
in this chapter, many parts of the basic algorithm are similar to the algorithm presented in
Chapter 3. As already mentioned there, the biggest difference is that the basic algorithm
assembles a new RKS R′ after checking a formula ϕ. This RKS is used as input for check-
ing formula which include ϕ as subformula. The validity of ϕ is inserted as labels in R′
and a sub-structure S which is called in different contexts is represented by copies of that
sub-structure, where each copy represents one contexts. Calls to S are redirected to the
correspondent copy by choosing the respective copy based on the context of that call.

The model checking of a formula ϕ is done via summaries which aggregate the knowl-
edge about the validity of ϕ in locations and calls. The goal in each step is to label all
locations in a summary. Then, a new RKS is built from the summary.

The algorithm presented here differs slightly from the algorithm presented in [44]. First,
other notations and namings are used. For example, boxes are called calls here and the
external assumption is called context assumption. Next, an RKS is no longer a sequence of
sub-structures but a set of sub-structures with a dedicated initial structure. As a contribu-
tion of this thesis, the algorithms split and merge were formalized here. The final difference
is that a distinction between ternary values in the summary and labels in the associated
Kripke structure is made. In [44], an assumption t led to a t label in the associated Kripke
structure. This was confusing, because it was not obvious that t is only an atomic propo-
sition in the Kripke structure instead of the formula >. To avoid this possible confusion
special pt and pm labels are used in the associated Kripke structure for the assumptions t
and m, respectively.

A.2. Summary Generation

This section depicts how the basic approach generates fully labeled summaries for a for-
mula ϕ, given an RKS which is already labeled with respect to subformulae of ϕ, which

93

Appendix A. Basic Approach

means that its locations l are labeled with atomic propositions ψ where the subformula ψ
holds.

A.2.1. Local Checking & Context Assumptions

The core idea of the algorithm is to reduce the global problem of solving a formula for the
whole RKS to a local problem which solves a formula for only a sub-structure disregarding
all other structures, despite some assumptions about sub-structures which are called by the
currently considered sub-structure.

The local checking is conducted by building an associated Kripke structure from the sub-
structure to be checked. A labeling is chosen for the built Kripke structure which reflects
the local labeling of the sub-structure and the assumptions about sub-structures which are
called by calls in the sub-structure. By choosing an appropriate labeling for the Kripke
structure, it combines the labeling of the sub-structure with the assumptions about calls in
that structure. The constructed Kripke structure is then checked by a usual model checker
for Kripke structures.

The problem with the local solution of a formula for a sub-structure is that its outcome
might depend on the call context, that is, on the sub-structure which calls the one under
consideration. Assumptions have to be made about the successor locations of the call
in the calling structure. To be precise, it has to be assumed whether the formula under
consideration holds in the successor locations. Since these successor locations are in the
call context of the sub-structure under consideration, the assumption about them is called
context assumption η ∈ T. By model checking a sub-structure with η = t and η = f , the
value for η = m can be derived using the ./ operator.

A.2.2. Summaries

Definition A.2.1 (Summaries). Let R = (S, Sin) be an RKS and S = (L, lin, lout, C, ν, δ, µ)
a sub-structure of R. A local summary γS for S is a pair (α, ω), where α : T × C ⇒ T is
an assumption function and ω : T × L ⇒ T is a guarantee function, such that α(m, c) =
α(t, c) ./ α(f , c) for all c ∈ C and ω(m, l) = ω(t, l) ./ ω(f , l) for all l ∈ L. The class of all local
summaries is depicted by Γ.

A global summary π : S → Γ for R is a mapping which assigns a local summary γ to each
sub-structure of R, that is, π(S) = γS for all S ∈ S. The class of all global summaries is depicted
by Π.

The term summary is used for both — local and global summaries — if it can be deduced from
the context which one is meant.

A summary depicts knowledge about the validity of a formula. The terms γϕ and πϕ are used to
denote that the respective summary depicts information about formula ϕ.

For a sub-structure S and a CTL formula ϕ, the summary γ = (α, ω) for that sub-
structure with respect to ϕ contains information about the validity of ϕ in calls and lo-
cations of S. The assumption function α(η, c) states which assumption is made about call
c ∈ C(S), if S is called in a context with context assumption η ∈ T. If the result is t or
f , then the summary already assumes that ϕ holds or does not hold in c, respectively. In
contrast, if the result is m, then no assumption can be made about the call c with respect to

94

A.2. Summary Generation

ϕ, yet. The guarantee function ω(η, l) states which guarantees can already be made about
locations l ∈ L(S), if S is called in a context with context assumption η ∈ T. If the result is
t or f , then ϕ is guaranteed to hold or not to hold in l, respectively. If the result is m, then
no guarantee can be given for l, yet.

Generally, the value m in the guarantee or assumption function represents that either
the sub-structure has not been checked yet or that the result was inconclusive. The latter
might be the case if the result depends on other unchecked or inconclusive summaries.

The context assumption η used as first parameter in the guarantee function ω and as-
sumption function α of a summary γϕ for sub-structure S with respect to formula ϕ is
equal to the topmost context assumption η in the call context θϕ = 〈η〉τ in the approach
of this thesis: It states whether ϕ holds in the successor location lsucc(c) of the call c which
calls the sub-structure S. For example, a concrete assumption value α(t, c) = t can be
interpreted as “If it is assumed that ϕ holds in the successor location of a call which calls
S, then it can be assumed that ϕ holds in the initial location lin(S←c) of sub-structure S←c
which is called by c. Note that only the values for the context assumptions t and f have to
be maintained explicitly for the guarantee and assumption functions. The values for the
m context assumptions can be derived with the ./ operator. Similarly to the knowledge
base, a summary can also be insufficiently labeled, partly labeled or fully labeled:

Definition A.2.2 (Labeled Summary). A summary γ = (α, ω) for a sub-structure S = (L, lin,
lout, C, ν, δ, µ) is called partly labeled, if its guarantee function is t or f in the initial location lin

for both context assumptions t or f :

∀η ∈ {t, f} . ω(η, lin) ∈ {t, f}

A summary is called fully labeled, if its guarantee function is t or f in all locations l ∈ L for
both context assumptions t or f :

∀l ∈ L, η ∈ {t, f} . ω(η, l) ∈ {t, f}

A summary is called unlabeled or insufficiently labeled if it is not partly labeled.

A partly labeled summary has already its initial location decided. Thus, it is labeled
with respect to its callers. This means that assumptions other summaries make about calls
which call the sub-structure of this summary can be updated to the value of the initial
location lin and will not be subject to change afterwards.

A fully labeled summary has all its locations labeled. It is completely model checked
with respect to ϕ. Note that a fully labeled summary is also partly labeled.

An unlabeled summary hasn’t got its initial location labeled for all context assumptions.
It may have other labeled locations and the initial location may be labeled for one - but not
all - context assumptions.

A.2.3. Context Assumptions

The basic approach does not restrict a call to have only one successor location. Therefore,
the context assumption of a call with respect to a formula ϕ is no longer only the validity
of ϕ in the successor location, but the logical disjunction of the validity of ϕ in all successor

95

Appendix A. Basic Approach

locations. This fact is expressed by the context assumption function ca : Γ × C × T → T,
which looks up the context assumption of a call. It is defined as follows:

ca((α, ω), c, η) =
∨

l∈L(S(c)) . (c,l)∈δS(c)

ω(η, l) (A.1)

The function looks up the guarantee for all successor locations of call c (in a given summary
γ and under a given context assumption η) and combines them by logical disjunction. For
example, if sub-structure S1 calls S2 in call c (i.e., νS1(c) = S2) and the context assumption
for c under a given summary γS1 and a given context assumption η is t, then S2 has to be
checked with the context assumption t.

It is sufficient to only use successor locations and not successor calls in the definition
of ca, because the definition of a recursive Kripke structure ensures that a call may never
be followed directly by another one. The use of logical disjunction for the determination
of the context assumption of a called sub-structure is justified because the algorithms use
the orthogonal CTL operators which only consists of EXψ, EGψ, and EψUχ. All these
operators use an existential quantification. Therefore, if the formula holds in at least one
successor location, then t is the correct context assumption. This semantics is satisfied by
combining the values by logical disjunction.

A.2.4. Sub-structure to Kripke Structure Transformation

The basic approach also constructs an associated Kripke structure from a sub-structure to
infer labels for a CTL formula ϕ by local model checking. The associated Kripke structure
K has exactly the same structure as in Chapter 3. However, instead of inferring the labels
for subformulae ofϕ from the knowledge base, the labels for these subformulae are already
represented as atomic propositions in the RKS. Therefore, it suffices to use these labels in
K. The labels for the validity of ϕ in calls and in the state ω are taken from the assumption
function α of the summary and from the context assumption η, respectively. The formal
definition of K for the basic approach is shown in Definition A.2.3.

Definition A.2.3 (Associated Kripke Structure). Let S be a sub-structure, γ = (α, ω) be a
summary for S, ϕ ≡ EGψ | EψUχ a CTL formula, and η ∈ T be a context assumption. Let
AP = {pψq, pχq, pt, pm} be a set of atomic propositions. Let α : T× AP → ℘(AP) be a function
which is defined as follows:

α(t, p) =

{
{p} if t = t

∅ otherwise

Let β : T→ ℘(AP) be a function which is defined as follows:

β(η) =

{pt} if η = t

{pm} if η = m

∅ otherwise

The associated Kripke structure K(S, α, η, ϕ) is a transition system (S, I, δ, µ) over the set of
atomic propositions AP with

• the set of states S = L ∪ C ∪ {ω}

96

A.2. Summary Generation

• the set of initial states I = {lin}

• the transition relation δ = δ ∪ {(lout, ω), (ω, ω)}

• the labelling function µ which is defined as follows:

µ(l) =

{
α(ψ ∈ µS(l), pψq) if ϕ ≡ EGψ
α(ψ ∈ µS(l), pψq) ∪ α(χ ∈ µS(l), pχq) if ϕ ≡ EψUχ

for all l ∈ L

µ(c) = β(α(η, c)) for all c ∈ C
µ(ω) = β(η)

While the new approach built an associated Kripke structure K(κ, S, θϕ) from a knowl-
edge base, a sub-structure, and a context, the basic approach builds K(S, α, η, ϕ) from
a sub-structure an assumption function, a context assumption, and the formula to be
checked. The assumption function is equal to the knowledge base: Assumptions for calls
are retrieved from it. The context assumption η is equal to the topmost context assump-
tion of θϕ. Thus, the only real difference is that location labels are taken directly from the
sub-structure labeling µ instead of out of the knowledge base. As already mentioned, this
requires that all subformulae of ϕ are present as atomic propositions in AP .

Another difference to K in the new approach is that the call and ω state labels are not
called pϕq and pϕ?q but rather pt and pm, respectively. This is the case, because these la-
bels do not necessarily express the validity of ϕ. Based on the structure of ϕ, they either
represent the validity of ϕ or in case of ϕ ≡ EXψ, they represent the validity of ψ.

A.2.5. Guarantee Coherence

The local coherence of a summary describes whether the guarantees can be deduced from
the current assumptions (i.e., whether it can be proven by model checking that the guaran-
tees hold). Incoherent guarantees which cannot be deduced, are hazardous because they
might turn out to be wrong. Continuing the model checking with incoherent guarantees
might lead to an overall wrong result. Therefore, the algorithm may never yield incoher-
ent guarantees. Definition A.2.4 shows the formal specification of coherence and maximal
coherence.

Definition A.2.4 (Locally Coherent Summary). Given an RKS R = (S, Sin) over AP ⊇
{ψ, χ}, a sub-structure S = (L, lin, lout, C, ν, δ, µ) of R, and a CTL formula ϕ ≡ EXψ | EGψ |
EψUχ . Let γ = (α, ω) be a summary for S with respect to ϕ. Let ϕp = ϕ{ψ 7→ pψq, χ 7→ pχq} be
a CTL formula in which direct subformulae ψ and χ of ϕ are replaced by atomic proposition pψq and
pχq. A guarantee ω(η, l) for a location l ∈ L and a context assumption η ∈ T is called coherent, if
it satisfies:

Case ϕ ≡ EXψ

1. ω(η, l) = t ⇒ K(S, α, η, ϕ), l |= EX(pψq ∨ pt)
2. ω(η, l) = f ⇒ K(S, α, η, ϕ), l |= ¬EX(pψq ∨ pt)

Case ϕ ≡ EGψ | EψUχ

97

Appendix A. Basic Approach

1. ω(η, l) = t ⇒ K(S, α, η, ϕ), l |= ϕp ∨ EpψqUpt

2. ω(η, l) = f ⇒ K(S, α, η, ϕ), l |= ¬(ϕp ∨ EpψqUpt ∨ EpψqUpm)

The summary γ is called coherent, if ω(η, l) is coherent for all η ∈ T and all l ∈ L. The summary π
forR is called coherent, if π(S) is coherent for all S ∈ S. A summary γ or π is called maximally
coherent, if the equations above hold with the implications (⇒) replaced by equivalences (⇔).

The equations in the definition of coherence are the basis for the deduceLabels function in
the new approach (cf. Definition 3.5 on page 50). The difference is only that the function in
the new approach is only used to label EG and EU formulae while the basic approach also
labels EX using the definition of coherence. Because of that, the definition of the associated
Kripke structure must use the pt values instead of pϕq for calls and the ω state. In the case
of ϕ ≡ EXψ, the validity of ϕ in the initial location of a sub-structure S does not imply the
validity in locations which are predecessors of a call which calls S. Instead, the validity of
ψ in the initial location does imply the validity of ϕ for predecessor locations of a call to S.
Because of that, the pt represents the validity of ψ in this case.

A value of m is always coherent, as it states no decision and therefore is never incorrect.
For t and f , the respective implication must hold for a coherent guarantee. Of course, the
implications for t and f are mutually exclusive. Note that coherence is only defined for
guarantees and thus locations. Coherence puts no restriction on assumptions made about
calls. However, the assumptions influence the coherence of guarantees, of course.

A summary is called maximally coherent if it is not possible to change a guarantee
from m to t or f without making it incoherent. Informally, maximal coherence states that
all guarantees which can be decided are decided. For example, in case of ϕ = EXp, if
K(S, αS , η, ϕ), l |= EX(pψq ∨ pt), then ωS(η, l) must be t to be maximally coherent. If it was
m, then the summary would not maximally coherent, but still coherent. If it was f , then
the summary would be incoherent.

The algorithm uses the definition for maximal coherence to make a summary maximally
coherent. This is done by switching a guarantee for a location l from m to t or f when the
respective formula from the coherence definition holds in l. Like in the new approach, the
validity of the formulae (i.e., whether K(S, αS , η, ϕ), l |= ψ) can be computed by model
checking of the (non-recursive) associated Kripke structure.

A.2.6. Assumption Consistency

In contrast to the new algorithm, the basic algorithm saves assumptions made about calls
explicitly in the assumption function α of a summary. These assumptions have to be up-
dated after guarantees change to reflect the latest guarantees for initial locations. Assump-
tions that reflect the latest guarantees are called consistent. A summary which only contains
consistent assumptions is also called consistent.

Consistency of assumptions is the counterpart to coherence of guarantees. While coher-
ence is used to decide guarantees, consistency is used to decide assumptions. During the
checking process, more and more sub-structures become partly labeled (i.e., their initial
location gets labeled). The assumptions for calls which call these sub-structures can then
be switched from m to either t or f . Definition A.2.5 depicts the formal specification of
consistency.

98

A.2. Summary Generation

Definition A.2.5 (Consistency). Let ϕ ≡ EXψ | EGψ | EψUχ be a CTL formula and let
S = (L, lin, lout, C, ν, δ, µ) be a sub-structure of an RKS R = (S, Sin) over atomic propositions
AP ⊇ {ψ, χ}. Let γ = (α, ω) be a summary for a sub-structure S with respect to ϕ and γc =
(αc, ωc) be a summary with respect to ϕ for a sub-structure S←c which is called by a call c ∈ C. An
assumption α(η, c) for call c under a context assumption η ∈ T is called consistent, if it satisfies
the following equation:

Case: ϕ = EXψ

α(η, c) = ψ ∈ µS←c(l
in(S←c)) (A.2)

Case: ϕ ≡ EGψ | EψUχ

α(η, c) = ωc(ca(γ, c, η), lin(S←c)) (A.3)

A summary γ is called consistent, if α(η, c) is consistent for all c ∈ C and all η ∈ T.
A summary π forR is called consistent, if π(S) is consistent for all S ∈ S.

For the case of ϕ ≡ EXψ, the assumption about a call reflects the labeling in the ini-
tial location of the called sub-structure with respect to ψ. For the other cases, consistency
requires that the assumption about a call c matches the guarantee given in the initial loca-
tion lin of the called sub-structure. In this case, it is important to choose the correct context
assumption. This is of course the context assumption ca for the call c.

The basic approach uses the equations in Definition A.2.5 to achieve consistency by re-
placing the equality with an assignment: Once all assumptions about all calls in all sub-
structures and with all context assumptions are updated according to the equations, the
resulting summary is certainly consistent.

A.2.7. The Summary Generation Algorithm

The algorithm for generating a fully labeled summary uses the definitions of maximal
coherence and consistency to incrementally decide the guarantees and assumptions of the
summary. Once a fixed point is reached, that is, all guarantees are maximally coherent
and all assumptions are consistent, the remaining m values can be decided, thus yielding
a fully decided summary.

Algorithm A.1 shows the function subcheck which generates a fully labeled summary. Its
structure is basically equal to the deduceLabels function of the new approach. The function
takes a recursive Kripke structure R and a formula ϕ as input and returns a fully labeled
summary for ϕ. Note that R must already be labeled with respect to subformulae ψ of
ϕ. This implies, that the checking for subformulae has to be accomplished in advance.
Therefore, the checking must be performed bottom-up from the innermost subformulae to
the formulae that use them.

The algorithm starts with the initialization of a summary π in which all guarantees and
assumptions are initialized with m. The functions makeMaxCoherent and makeConsistent
use the definitions of maximal coherence and consistency, respectively, to update the val-
ues in π. The updates are executed alternatingly until the fixed point is found, which is the
case once all assumptions are consistent after the guarantees have been made maximally

99

Appendix A. Basic Approach

Algorithm A.1 subcheck : R× CTL→ Π

fun subcheck(R, ϕ) =

1: π ← (_ 7→m)
2: π ← makeMaxCoherent(R, ϕ, π)
3: while ¬isConsistent(R, π) do
4: π ← makeConsistent(R, π)
5: π ← makeMaxCoherent(R, ϕ, π)
6: end while
7: π ← decideRemainingMaybes(ϕ, π)
8: return π

coherent. The function isConsistent uses the definition of consistency to check when that is
the case.

Once the loop terminates and the fixed point is found, there may still be remaining m
guarantees and assumptions. These values are now resolved by the function decideRemain-
ingMaybes. This step is equal to the one in the new algorithm: In case of EU, remaining m
values are labeled f . In case of EG, remaining m values are labeled t. In case EX, no m la-
bels can exist, because the first call of makeMaxCoherent is always able to label all locations
in this case.

After the remaining values have been decided, the summary π, which is now fully la-
beled, is returned. It can be used to infer the result in the initial configuration or to check
formulae which use ϕ as subformula. To do the checking of nested formulae, some more
steps have to be performed, which are presented in the next section.

A.3. Checking Nested CTL Formulae

The previous section depicted the algorithm for creating a fully decided summary for a
formula ϕ. A prerequisite for this algorithm was that the validity of subformulae of ϕ was
present as atomic propositions in the RKS. This section presents the steps which have to be
performed to check nested formulae. As already stated in the previous section, a bottom
up approach is used which checks the innermost formulae (which are atomic propositions
or >) first and then uses the result to check outer formulae. The input rksR and summary
generated by the subcheck function has to be transformed into a new rks R′ which has its
locations labeled with labels ϕ where ϕ is valid.

The resulting RKS has usually more sub-structures than the initial one, because the con-
text assumptions are “woven” into the structure of the RKS: If a sub-structure is called with
context assumption t and f by two different calls, then the sub-structure is split into two
new sub-structures, one for context assumption t and one for f , and the calls are pointed
to the sub-structure which corresponds to their call context assumption. By weaving the
context assumptions into the structure of the RKS itself after each checking of a formula,
no formula context θ, as used by the new algorithm, is necessary. Instead, the context is
implicitly represented in the structure of the resulting RKS.

There are two main challenges which have to be addressed during the construction of
the resulting RKS: The first one is the step from a decided summary to an RKS which

100

A.3. Checking Nested CTL Formulae

contains the results of that summary as labels and has the context assumptions represented
in its structure. This step is called split, because it usually splits a sub-structure into two
new ones with different context assumptions. All calls which previously called a split sub-
structure now have to be “routed” to the correct resulting structure. The second challenge
is the merging of the RKSs which are gathered from checking the subformulae of binary
operators like EψUχ and ψ ∨ χ. In this step, the sub-structures of the two RKSs have to be
merged into new resulting sub-structures. While the combining of the labels for ψ and χ
is quite straight forward, the challenge lies again in the correct assignment of call targets.
This step is called merge.

A.3.1. Split

During the split step, a new RKS is built from the input RKS and the generated summary
π for a formula ϕ. The t guarantees in the summary are to be included as ϕ labels in the
resulting RKS. The challenge in this step is that a summary always contains two guarantees
for a location l, one for the t and one for the f context assumption1. The context assumption
to be used depends on the validity of ϕ in the successor locations of a call which calls the
sub-structure. This dependency can lead to a split of a sub-structure: If a sub-structure S
is called by two calls and the formula holds in the successor locations of one of them but
not in the successor locations of the other, then two sub-structures have to be constructed
from S. One of them is labeled with the guarantees for the f context assumption and the
other one for the t context assumption. The call target functions ν have to be altered to
point to the respective newly created sub-structure.

The split operation is performed by doing an exploration of the call-graph which visits
sub-structures under a given context assumption: It starts with the initial sub-structure Sin

under the initial context assumption ηin. It then explores all calls recursively, using their
respective call context assumption ca. Each visited sub-structure context assumption pair
(S, η) is used to generate a new sub-structure. This sub-structure retains the structure of
S but labels locations l according to the guarantees ω(η, l) of the summary using context
assumption η. To avoid visiting a pair twice, all visited pairs are saved in a mapping which
maps this pair to the sub-structure which was created for it.

Algorithm A.2 shows the pseudo-code for the split method. The method takes an RKS
R, a fully labeled summary π for a formula ϕ, and an initial context assumption ηin. It
returns a new RKSR′ which has the validity of ϕ encoded as ϕ labels.

The algorithm starts with calling the exploreAndSplit function which performs the call-
graph exploration. This exploration is started with the initial sub-structure Sin called
with the initial context assumption ηin. The exploration function uses an accumulator
υ : S×T 7→ S which stores the information about which configurations are already visited:
It maps visited sub-structure context assumption pairs to the sub-structures which were
generated for them. The accumulator starts empty, which means as a function which is
undefined (⊥) for each sub-structure context assumption pair. This accumulator is also the
return value of the exploration function.

1Actually, it contains three guarantees for the context assumptions t, f , and m. However, the guarantees
for m are only important during the summary generation where m assumptions still exist. After the
generation, only the values for t and f are of further interest.

101

Appendix A. Basic Approach

Algorithm A.2 split : R×Π× T→ R
fun split(R ≡ (S, Sin), π, ηin) =

1: υ ← exploreAndSplit((_ 7→ ⊥), π, Sin, ηin)
2: S′ ← ∅
3: for all (S, η, S′) ∈ υ do
4: S′ ← S′ ∪ {S′}
5: end for
6: R′ ← (S′, υ(Sin, ηin))
7: return R′

fun exploreAndSplit(υ, π, S, η) =

1: if υ(S, η) = ⊥ then
2: S′ ← copySub(S)
3: υ(S, η)← S′

4: (α, ω)← π(S)
5: for all l ∈ L(S) do //Read labels from summary
6: µS′(l)← if ω(η, l) = t then {ϕ} else ∅
7: end for
8: for all c ∈ C(S) do
9: ηc ← ca(π(S), c, η)

10: υ ← exploreAndSplit(υ, π, S←c, ηc) //Recursive exploration
11: νS′(c)← υ(S←c, ηc) //Set call target
12: end for
13: end if
14: return υ

102

A.3. Checking Nested CTL Formulae

The exploration function starts with checking whether the pair (S, η) is already visited
(line 1). If it is, the function returns immediately. Otherwise, a new sub-structure is created
from S and inserted into the accumulator υ (lines 2 and 3). The operation copySub creates a
copy of S which has an empty call mapping and label function (ν(c) = ⊥ for all c, µ(l) = ∅
for all l). The rest of the exploration function fills ν and µ with the respective values. First,
the labels are assigned to µ by labeling a location l with ϕ if the guarantee ω(η, l) is t (lines
4 to 7). Afterwards, the recursive exploration of calls in C(S) is performed (line 8 to 12).
For each call, the context assumption ηc is calculated using the ca function (line 9). Then,
the called sub-structure S←c is visited using ηc as context assumption (line 10). After the
target of call c is visited, the sub-structure which was generated for that target is inserted
as call target for this call (line 11).

After the exploration is finished, the split function iterates over the accumulator and
inserts the generated sub-structures S′ into a new set S′. A new RKS R′ is built from S′ in
which the initial sub-structure is the sub-structure generated for the initial sub-structure
of the input RKS under the initial context assumption (υ(Sin, ηin)).

As visible from the algorithm, the “weaving” of the call context into the structure of the
RKS is performed in line 11 of function exploreAndSplit: The target of a call is redirected
to the sub-structure which was built for the corresponding context assumption. Therefore,
two calls which previously pointed to the same sub-structure can point to different ones
after the split, if they called the sub-structure under different context assumptions. This
is the way the basic approach encodes the call context implicitly in the structure of the
resulting RKS.

A.3.2. Merge

During the checking of nested formulae, there are cases where two recursive Kripke struc-
tures have to be combined. Concretely, this is the case whenever a formula with two sub-
formulae is checked, that is, the cases of ϕ ≡ ψ ∨ χ and ϕ ≡ EψUχ. The checking of the
subformulae ψ and χ each yields a recursive Kripke structure. However, the summary
generation algorithm expects one recursive Kripke structure which has both subformulae
as atomic labels. Since the basic algorithm encodes the context in the structure itself, it is
necessary to merge the structure of the RKSs to combine the contexts. The merge operation
accomplishes this transformation: It merges the labels of two RKSs into one RKS with both
labels.

Just like the split operation, a merge is conducted by performing a call-graph explo-
ration. Since there are two call graphs now (the two input RKSs), these have to be explored
synchronously to decide, which sub-structures have to be merged. The merge operation is
depicted in Algorithm A.3.

The structure of the function is very similar to the one of the split operation. The first
step is to perform the exploration (exploreAndMerge) starting from the respective initial
sub-structure of the two input RKSs. In this case, the accumulator υ : S × S → S′ is a
mapping from two sub-structures (one of each input RKS) to the resulting sub-structure
which was generated for this pair of sub-structures.

The exploreAndMerge starts by creating a new sub-structure S′ from any of the two sub-
structures. Again, the call mapping and label function are empty for the newly created sub-
structure (line 2). This sub-structure is inserted into the accumulator (line 3). Afterwards,

103

Appendix A. Basic Approach

Algorithm A.3 merge : R× R→ R
fun merge(R1 ≡ (S1, Sin

1),R2 ≡ (S2, Sin
2)) =

1: υ ← exploreAndMerge((_ 7→ ⊥), Sin
1 , S

in
2)

2: S′ ← ∅
3: for all (S1, S2, S

′) ∈ υ do
4: S′ ← S′ ∪ {S′}
5: end for
6: R′ ← (S′, υ(Sin

1 , S
in
2))

7: return R′

fun exploreAndMerge(υ, S1, S2) =

1: if υ(S1, S2) = ⊥ then
2: S′ ← copySub(S1)
3: υ(S1, S2)← S′

4: for all l ∈ L(S) do //Merge labels
5: µS′(l)← µS1(l) ∪ µS2(l)
6: end for
7: for all c ∈ C(S) do
8: v ← exploreAndMerge(υ, S1

←c, S
2
←c) //Recursive exploration (Sx

←c = νSx(c))
9: νS′(c)← υ(S1

←c, S
2
←c) //Set call target

10: end for
11: end if
12: return υ

the labels of the new sub-structure are generated by merging the labels of the input sub-
structures (line 4 to 6). Finally, recursive exploration of calls is performed and the call
targets are set to the newly created sub-structures (lines 7 to 11). After the exploration
function returns the accumulator, the merge function builds a new RKSR′ from the created
sub-structures, using the sub-structure which was created for the two initial sub-structures
of the input RKSs as initial sub-structure.

A merge yields the combination of two RKSs for subformulae ψ and χ which can be
used to check, for example, ψ ∨ χ. Using this operation and the split operation from the
previous section, the overall approach for checking nested formulae can be defined.

A.3.3. Labeling Nested Formulae

The last two sections introduced the operations split and merge which generate an RKS
from a summary and merge two RKSs, respectively. Of course, a third fundamental oper-
ation for the checking nested formulae is the summary generation function subcheck which
was elaborated in Section A.2.7. As already mentioned, the algorithm for checking nested
formulae is performed by structural recursion. The function for conducting the check is
called label and is depicted by Algorithm A.4.

The function takes a recursive Kripke structure R and a CTL formula ϕ. Of course, it is
a requirement that ϕ and Rmust be defined over the same set of atomic proposition. The
result is a pair of an RKS which contains labels representing the validity of ϕ and an initial

104

A.3. Checking Nested CTL Formulae

Algorithm A.4 label : R× CTL→ (R× T)

The label function is defined recursively over the structure of the formula ϕ which is to be
checked.

fun label(R, ϕ) =

ϕ ≡ > →
Rϕ ← relabel all S ∈ S(R), l ∈ L(S) set µS(l) = {>}
return (Rϕ, t)

ϕ ≡ p ∈ AP →
return (R, f)

ϕ ≡ ¬ψ →
(Rψ, ηψ)← label(R, ψ)
Rϕ ← relabel all S ∈ S(Rψ), l ∈ L(S)

set µS(l) = {¬ψ} where ψ /∈ µS(l)
return (Rϕ,¬ηψ)

ϕ ≡ ψ ∨ χ→
(Rψ, ηψ)← label(R, ψ)
(Rχ, ηχ)← label(R, χ)
R′ ← merge(Rψ,Rχ)
Rϕ ← relabel all S ∈ S(R′), l ∈ L(S)

set µS(l) = {ψ ∨ χ} where ψ ∈ µS(l) ∨ χ ∈ µS(l)
return (Rϕ, ηψ ∨ ηχ)

ϕ ≡ EXψ | EGψ →
(Rψ, ηψ)← label(R, ψ)
πϕ ← subcheck(Rψ, ϕ)
Rϕ ← split(Rψ, πϕ, ηψ)
return (Rϕ, ηψ)

ϕ ≡ EψUχ→
(Rψ, ηψ)← label(R, ψ)
(Rχ, ηχ)← label(R, χ)
R′ ← merge(Rψ,Rχ)
πϕ ← subcheck(R′, ϕ)
Rϕ ← split(R′, πϕ, ηχ)
return (Rϕ, ηχ)

105

Appendix A. Basic Approach

context assumption η. This context assumption represents the context under which the
initial sub-structure is called in the initial configuration. The context assumption returned
by the algorithm is equal to the one of the new approach as defined by the ica function (cf.
page 37).

The base cases for the recursion are the ones where ϕ is either > or where it is an atomic
proposition p. In the case of an atomic proposition, the Kripke structure is simply returned
with an f initial context assumption. In case of >, R is relabeled. The result of such a
relabel operation is an RKS which shares all components with the source RKS, except of
the labeling functions µS , which are replaced. In this case, a > label is inserted at each
location. The context assumption for > is t, of course.

The first recursive case is the one where ϕ ≡ ¬ψ. Each recursive step begins with the
recursive checking of subformulae. In this case, the subformula ψ is checked, which yields
an RKS Rψ and a initial context assumption ηψ. The resulting structure is again obtained
by performing a relabeling, which “inverses” the labels: In each location lwhere the source
structure had the label ψ, the new structure has no label. In all other locations, the new
structure receives the label ¬ψ. The “negated” RKS is returned, together with the initial
context assumption ηψ of the subformula, which is negated as well.

The second recursive case is ϕ ≡ ψ ∨ χ. Again, the first step is the recursive checking
of the subformulae. Since the operator ∨ is a binary one, a merge has to be performed
to merge the labels of the RKSs for ψ and χ into one RKS. After the merge, a relabeling
is conducted which performs a logical disjunction of the labels: Each location which has
at least one of the labels ψ or χ receives the label ψ ∨ χ. All other locations receive no
label. The relabeled structure is returned together with the initial context assumptions of
the subformulae, which are combined by a logical disjunction, as well.

In all of the mentioned cases, no summaries are necessary, because they merely represent
propositional logic operations. The remaining cases are path quantifiers which implies that
they require the generation of a summary and the split operation.

The first path quantifier case is the one where ϕ is either EXψ or EGψ. After the recursive
call for the subformula ψ, ϕ is checked by generating a fully labeled summary. The split
operation transforms the results from the summary to a new RKS which is labeled accord-
ingly. This RKS is returned together with the initial context assumption of the subformula,
which is not altered.

The final case is ϕ ≡ EψUχ. After the recursive check of the subformulae, the resulting
RKSs are combined with the merge operation, yielding an RKS which can be used as input
for the subcheck algorithm. The rest of this case is equivalent to the one before: The sum-
mary is generated and split is used to create a properly labeled RKS from it. This RKS is
returned, together with the initial context assumption of the χ subformula.

Using the label function, an arbitrarily nested formula can be labeled for an RKS. For
model checking an RKSRwith respect to a formula ϕ, the label(R, ϕ) function is executed
and the resulting rks R′ = (S, Sin) is used to deduce the validity of ϕ in the initial config-
uration of the RKS:

R |= ϕ⇔ ϕ ∈ µSin(lin(Sin))

106

A.4. Correctness

A.4. Correctness

Because the basic algorithm is not in the direct focus of this thesis, no proof for its correct-
ness is given. However, a draft for how a proof could look like is suggested here.

The labeling of EU and EG with the fixed point algorithm is done in a similar way
as already proven for the new approach. Therefore, a proof for this step will also look
very similar to the one conducted. The only difference is that more than one successor
location of a call may exist in the basic algorithm, so any proof containing statements about
properties of the successor location must instead be conducted for any of the successor
locations. This should not pose a problem, since both operators are existentially quantified.
Therefore, it suffices to have one path (i.e., one of the successor locations) satisfying a
property. This is exactly what the ca function does by computing the logical disjunction of
the formula validity values in the successor locations.

The labeling for EX is done differently than in the new approach. However, it is trivial
to show its correctness. The same is true for the non-temporal operators.

The only aspect which really needs attention is the split and the merge step. These steps
to create new RKSs are not performed in the new approach. Instead, the new approach
works with a full call context θϕ which represents assumptions about the validity of ϕ and
each of its subformulae in the successor location of a call. A proof for the correctness of split
and merge could be conducted by showing that these operations insert the call context into
the structure of the RKS correctly. It is quite certain that this is the case, because especially
split does “link” all call targets to the sub-structure with the correct context assumption
and therefore represent the context assumption for the topmost formula by choosing the
respective call target. As this is done for each formula, the topmost context assumption
is always inserted into the structure of the RKS. Thus, a proof could be conducted by
structural induction over the formula to show that the full call context θϕ is represented
in the link structure of the RKS. If this is shown, then the operations split and merge are
basically equal to the steps conducted in new approach. Therefore, the correctness of the
new approach could be used to argue that also the basic approach is correct.

107

Bibliography

[1] R. Alur. Model checking: From tools to theory. 25 Years of Model Checking, pages
89–106, 2008.

[2] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis. Analysis
of recursive state machines. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(4):786–818, 2005.

[3] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly reachability and
cycle detection for recursive state machines. Tools and Algorithms for the Construction
and Analysis of Systems, pages 61–76, 2005.

[4] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and re-
turns. Tools and Algorithms for the Construction and Analysis of Systems, pages 467–481,
2004.

[5] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In
Computer Aided Verification, pages 207–220. Springer, 2001.

[6] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state machines.
Automata, Languages and Programming, pages 703–703, 1999.

[7] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages 202–211. ACM, 2004.

[8] R. Alur and P. Madhusudan. Adding nesting structure to words. In Developments in
Language Theory, pages 1–13. Springer, 2006.

[9] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. In ACM
SIGSOFT Software Engineering Notes, volume 23, pages 175–188. ACM, 1998.

[10] B. Aminof, A. Murano, and M. Vardi. Pushdown module checking with imperfect
information. CONCUR 2007–Concurrency Theory, pages 460–475, 2007.

[11] C. Baier and J.P. Katoen. Principles of model checking, volume 950. MIT press, 2008.

[12] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate abstraction
of c programs. In ACM SIGPLAN Notices, volume 36, pages 203–213. ACM, 2001.

[13] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
SPIN Model Checking and Software Verification, pages 113–130, 2000.

[14] T. Ball and S. Rajamani. The slam toolkit. In Computer aided verification, pages 260–264.
Springer, 2001.

109

BIBLIOGRAPHY

[15] T. Ball and S.K. Rajamani. Automatically validating temporal safety properties of
interfaces. In Proceedings of the 8th international SPIN workshop on Model checking of
software, pages 103–122. Springer-Verlag New York, Inc., 2001.

[16] T. Ball and S.K. Rajamani. The s lam project: debugging system software via static
analysis. ACM SIGPLAN Notices, 37(1):1–3, 2002.

[17] G. Basler, D. Kroening, and G. Weissenbacher. Sat-based summarization for boolean
programs. In Proceedings of the 14th international SPIN conference on Model checking
software, pages 131–148. Springer-Verlag, 2007.

[18] G. Basler, D. Kroening, and G. Weissenbacher. A complete bounded model check-
ing algorithm for pushdown systems. Hardware and Software: Verification and Testing,
pages 202–217, 2008.

[19] M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted hierarchical
state machines. Automata, Languages and Programming, pages 652–666, 2001.

[20] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. The software model checker b
last. International Journal on Software Tools for Technology Transfer (STTT), 9(5):505–525,
2007.

[21] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. CONCUR’97: Concurrency Theory, pages 135–150,
1997.

[22] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis of
concurrent programs with procedures. In ACM SIGPLAN Notices, volume 38, pages
62–73. ACM, 2003.

[23] L. Bozzelli. Complexity results on branching-time pushdown model checking. Theo-
retical computer science, 379(1-2):286–297, 2007.

[24] L. Bozzelli, A. Murano, and A. Peron. Pushdown module checking. In Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, pages 504–518. Springer, 2005.

[25] T. Brázdil, A. Kučera, and O. Stražovskỳ. On the decidability of temporal properties
of probabilistic pushdown automata. STACS 2005, pages 145–157, 2005.

[26] O. Burkart and Y.M. Quemener. Model-checking of infinite graphs defined by graph gram-
mars. Citeseer, 1996.

[27] O. Burkart and B. Steffen. Model checking for context-free processes. In CONCUR’92,
pages 123–137. Springer, 1992.

[28] O. Burkart and B. Steffen. Composition, decomposition and model checking of push-
down processes. Nordic Journal of Computing, 2(2):89–125, 1995.

[29] O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite
sequential processes. Automata, Languages and Programming, pages 419–429, 1997.

110

BIBLIOGRAPHY

[30] T. Cachat. Two-way tree automata solving pushdown games. Automata logics, and
infinite games, pages 413–419, 2002.

[31] T. Cachat. Higher order pushdown automata, the caucal hierarchy of graphs and
parity games. Automata, Languages and Programming, pages 193–193, 2003.

[32] T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. Electronic
Notes in Theoretical Computer Science, 68(6):71–84, 2003.

[33] A. Carayol, M. Hague, A. Meyer, C.H.L. Ong, and O. Serre. Winning regions of
higher-order pushdown games. In Logic in Computer Science, 2008. LICS’08. 23rd An-
nual IEEE Symposium on, pages 193–204. IEEE, 2008.

[34] A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic and
higher-order pushdown automata. FST TCS 2003: Foundations of Software Technology
and Theoretical Computer Science, pages 112–123, 2003.

[35] S. Chaudhuri. Subcubic algorithms for recursive state machines. In ACM SIGPLAN
Notices, volume 43, pages 159–169. ACM, 2008.

[36] H. Chen and D. Wagner. Mops: an infrastructure for examining security properties
of software. In Proceedings of the 9th ACM Conference on Computer and Communications
Security, pages 235–244. ACM, 2002.

[37] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.
In Computer Aided Verification, pages 241–268. Springer, 2002.

[38] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A new symbolic model
verifier. In Computer Aided Verification, pages 682–682. Springer, 1999.

[39] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model
checking pushdown systems. In Computer Aided Verification, pages 232–247. Springer,
2000.

[40] J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural data-
flow analysis. In Foundations of Software Science and Computation Structures, pages
642–642. Springer, 1999.

[41] J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown au-
tomata. In Logic in Computer Science, 2004. Proceedings of the 19th Annual IEEE Sym-
posium on, pages 12–21. IEEE, 2004.

[42] J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs. In
Computer Aided Verification, pages 324–336. Springer, 2001.

[43] K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
state machines. Tools and Algorithms for the Construction and Analysis of Systems, pages
253–270, 2005.

111

BIBLIOGRAPHY

[44] A. Fehnker and C. Dubslaff. Inter-procedural analysis of computer programs, Febru-
ary 19 2010. US Patent App. 12/709,053.

[45] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and F. Rauch. Goanna—a static model
checker. Formal Methods: Applications and Technology, pages 297–300, 2007.

[46] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and F. Rauch. Model checking soft-
ware at compile time. In Theoretical Aspects of Software Engineering, 2007. TASE’07.
First Joint IEEE/IFIP Symposium on, pages 45–56. IEEE, 2007.

[47] A. Ferrante, A. Murano, and M. Parente. Enriched µ-calculus pushdown module
checking. In Proceedings of the 14th international conference on Logic for programming,
artificial intelligence and reasoning, pages 438–453. Springer-Verlag, 2007.

[48] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. Electronic Notes in Theoretical Computer Science, 9:27–37, 1997.

[49] S. Gnesi and F. Mazzanti. On the fly model checking of communicating uml state
machines. In Second ACIS International Conference on Software Engineering Research,
Management and Applications (SERA2004), pages 331–338, 2004.

[50] M. Hague. Saturation methods for global model-checking pushdown systems. PhD thesis,
PhD. Thesis, University of Oxford, 2009.

[51] M. Hague and C. Ong. Symbolic backwards-reachability analysis for higher-order
pushdown systems. Foundations of Software Science and Computational Structures, pages
213–227, 2007.

[52] G.J. Holzmann. The model checker spin. Software Engineering, IEEE Transactions on,
23(5):279–295, 1997.

[53] K. Hristova and Y. Liu. Improved algorithm complexities for linear temporal logic
model checking of pushdown systems. In Verification, Model Checking, and Abstract
Interpretation, pages 190–206. Springer, 2006.

[54] R. Huuck, A. Fehnker, S. Seefried, and J. Brauer. Goanna: Syntactic software model
checking. Automated Technology for Verification and Analysis, pages 216–221, 2008.

[55] S. Kripke. Semantical considerations on modal logic. Acta philosophica fennica,
16(1963):83–94, 1963.

[56] A. Kucera, J. Esparza, and R. Mayr. Model checking probabilistic pushdown au-
tomata. Logical Methods in Computer Science, 2(1), 2006.

[57] O. Kupferman, N. Piterman, and M. Vardi. Model checking linear properties of prefix-
recognizable systems. In Computer Aided Verification, pages 281–302. Springer, 2002.

[58] O. Kupferman, N. Piterman, and M. Vardi. An automata-theoretic approach to
infinite-state systems. Time for verification, pages 202–259, 2010.

[59] O. Kupferman and M. Vardi. Module checking. In Computer Aided Verification, pages
75–86. Springer, 1996.

112

BIBLIOGRAPHY

[60] O. Kupferman and M. Vardi. An automata-theoretic approach to reasoning about
infinite-state systems. In Computer Aided Verification, pages 36–52. Springer, 2000.

[61] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM (JACM), 47(2):312–360, 2000.

[62] S. La Torre, M. Napoli, M. Parente, and G. Parlato. Verification of scope-dependent
hierarchical state machines. Information and Computation, 206(9-10):1161–1177, 2008.

[63] J. Obdrzálek. Model checking java using pushdown systems. In Workshop on Formal
Techniques for Java-like Programs. Citeseer, 2002.

[64] N. Piterman and M. Vardi. Global model-checking of infinite-state systems. In Com-
puter Aided Verification, pages 311–314. Springer, 2004.

[65] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 49–61. ACM, 1995.

[66] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science, 167(1-2):131–170,
1996.

[67] S. Schwoon. Model-checking pushdown systems. PhD thesis, Technische Universität
München, Universitätsbibliothek, 2002.

[68] F. Song and T. Touili. Efficient ctl model-checking for pushdown systems. CONCUR
2011–Concurrency Theory, pages 434–449, 2011.

[69] D. Suwimonteerabuth, F. Berger, S. Schwoon, and J. Esparza. jmoped: A test environ-
ment for java programs. In Proceedings of the 19th international conference on Computer
aided verification, pages 164–167. Springer-Verlag, 2007.

[70] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jmoped: A java bytecode checker
based on moped. Tools and Algorithms for the Construction and Analysis of Systems, pages
541–545, 2005.

[71] M. Vardi. Reasoning about the past with two-way automata. Automata, Languages and
Programming, pages 628–641, 1998.

[72] I. Walukiewicz. Pushdown processes: Games and model checking. In Computer Aided
Verification, pages 62–74. Springer, 1996.

[73] I. Walukiewicz. Model checking ctl properties of pushdown systems. FST TCS
2000: Foundations of Software Technology and Theoretical Computer Science, pages 127–
138, 2000.

113

List of Figures

1.1. A C function and its corresponding control flow graph 2

2.1. A C function and its corresponding Kripke structure 12
2.2. A Kripke structure . 15
2.3. C program with three functions . 18
2.4. A Kripke Structure for the program from Figure 2.3 18
2.5. The sub-structures of an RKS modeling the program from Figure 2.3 20

3.1. An RKS for exemplifying call contexts . 31
3.2. An example sub-structure and its context . 39
3.3. The RKS ({A,B}, A) and its associated contexts 41
3.4. A sub-structure (left) and its associate Kripke structures with respect to ψ =

p (middle) and ψ = EGp (right) . 49
3.5. Example for the steps of the fixed point algorithm 51
3.6. The fixed point algorithm yielding remaining m values 56
3.7. Two recursive Kripke structures . 58

4.1. Sub-structures of an example RKS . 71
4.2. Order of the checking process of the RKS from Figure 4.1 with respect to

formula E(EGp)Uq . 71

5.1. The Kripke structure corresponding to Listing 5.1 81
5.2. RKS corresponding to the specification from Listing 5.2 82

115

List of Algorithms

3.1. labelOneFormula : K× R× CTL→ K . 40
3.2. collectContexts : K× S×Θ→ ℘(S×Θ) . 40
3.3. computeLabels : K× ℘(S×Θ)× CTL→ K 46
3.4. labelByFixpoint : K× ℘(S×Θ)× CTL→ K 48
3.5. deduceLabels : K× S×Θ→ K . 50
3.6. decideRemainingMaybes : K× ℘(S×Θ)× CTL→ K 54
3.7. label : K× R× CTL→ K . 57
3.8. modelcheck : R× CTL→ B . 58

4.1. label : K× S×Θ× {fully, partly} → K . 68
4.2. collectContexts : K× S×Θ× {fully, partly} → ℘(S×Θ) 69
4.3. labelLocallyAndVertically : K× S×Θ× {fully, partly} → K 70
4.4. labelLocally : K× S×Θ→ K . 73
4.5. deduceLabels : K× S×Θ→ K . 74

A.1. subcheck : R× CTL→ Π . 100
A.2. split : R×Π× T→ R . 102
A.3. merge : R× R→ R . 104
A.4. label : R× CTL→ (R× T) . 105

117

	Glossary
	Introduction
	Objective & Motivation
	Related Work
	Scope
	Overview

	Recursive Kripke Structures
	Kripke Structures
	Computational Tree Logic (CTL)
	Minimal Representation of CTL
	Recursive Kripke Structures
	Ternary Logic

	Model Checking Recursive Kripke Structures with CTL
	The Basic Approach
	Overview
	Preliminary Considerations
	Call Context
	Knowledge Base
	Obtaining Certain Call Contexts

	The Labeling Algorithm
	Labeling EG and EU
	Model Checking Using the Labeling Algorithm
	Differences to the Basic Approach

	Incremental Refinement
	Overview
	Differences to the Non-Incremenal Algorithm
	Algorithmic Details
	EG and EU Labeling in Presence of Subformula m Values
	Correctness of the Incremental Refinement

	Implementation
	Input Specification
	State Space Generation
	Data Representation
	Optimizations
	Evaluation

	Conclusion & Future Work
	Appendix
	Basic Approach
	Overview
	Summary Generation
	Local Checking & Context Assumptions
	Summaries
	Context Assumptions
	Sub-structure to Kripke Structure Transformation
	Guarantee Coherence
	Assumption Consistency
	The Summary Generation Algorithm

	Checking Nested CTL Formulae
	Split
	Merge
	Labeling Nested Formulae

	Correctness

	Bibliography
	List of Figures
	List of Algorithms

